
BBSRead.adoc

BBSRead.adoc ii

COLLABORATORS

TITLE :

BBSRead.adoc

ACTION NAME DATE SIGNATURE

WRITTEN BY April 17, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

BBSRead.adoc iii

Contents

1 BBSRead.adoc 1

1.1 bbsread.library . 1

1.2 bbsread.library/--background-- . 3

1.3 bbsread.library/AppendPassiveConfList() . 4

1.4 bbsread.library/Archive() . 5

1.5 bbsread.library/BBSEventArchiver() . 6

1.6 bbsread.library/BBSUserData() . 6

1.7 bbsread.library/BufBRClose() . 7

1.8 bbsread.library/BufBROpen() . 8

1.9 bbsread.library/BufBRRead() . 8

1.10 bbsread.library/BufBRSeek() . 9

1.11 bbsread.library/BufBRWrite() . 10

1.12 bbsread.library/CharsetConvert() . 10

1.13 bbsread.library/ConfCharset() . 11

1.14 bbsread.library/ConfigBBS() . 12

1.15 bbsread.library/ConfigConf() . 16

1.16 bbsread.library/ConfigFArea() . 19

1.17 bbsread.library/ConfigGlobal() . 21

1.18 bbsread.library/ConfigType() . 24

1.19 bbsread.library/ConfLineLength() . 27

1.20 bbsread.library/EndOfAdding() . 27

1.21 bbsread.library/ExternalBBSConfig() . 28

1.22 bbsread.library/FindDupBRMsg() . 29

1.23 bbsread.library/FindOrginalNr() . 30

1.24 bbsread.library/FreeBRObject() . 30

1.25 bbsread.library/GetBBSList() . 31

1.26 bbsread.library/GetConfigValue() . 32

1.27 bbsread.library/GetConfList() . 33

1.28 bbsread.library/GetFAreaList() . 34

1.29 bbsread.library/GetGlobalConfig() . 35

BBSRead.adoc iv

1.30 bbsread.library/GetMarkedMsg() . 36

1.31 bbsread.library/GetSignature() . 36

1.32 bbsread.library/GetTagFile() . 37

1.33 bbsread.library/GetTypeList() . 38

1.34 bbsread.library/MakeEventPackage() . 39

1.35 bbsread.library/MarkMessage() . 40

1.36 bbsread.library/PackDataFile() . 41

1.37 bbsread.library/ParseGrab() . 43

1.38 bbsread.library/PGPBREvents() . 44

1.39 bbsread.library/ReadBREvent() . 45

1.40 bbsread.library/ReadBRFile() . 46

1.41 bbsread.library/ReadBRKill() . 47

1.42 bbsread.library/ReadBRMessage() . 49

1.43 bbsread.library/ReadBRUser() . 50

1.44 bbsread.library/ReadPassiveConfList() . 52

1.45 bbsread.library/ScanForGrabs() . 52

1.46 bbsread.library/SearchBRFile() . 53

1.47 bbsread.library/SearchBRMessage() . 54

1.48 bbsread.library/SearchBRUser() . 56

1.49 bbsread.library/SortMessageArray() . 57

1.50 bbsread.library/StartOfAdding() . 58

1.51 bbsread.library/TypeFromBBS() . 59

1.52 bbsread.library/UnArchive() . 60

1.53 bbsread.library/UniqueMsgFile() . 61

1.54 bbsread.library/UpdateBREvent() . 62

1.55 bbsread.library/UpdateBRMessage() . 63

1.56 bbsread.library/UpdateDataStruct() . 65

1.57 bbsread.library/WriteBREvent() . 66

1.58 bbsread.library/WriteBRFile() . 69

1.59 bbsread.library/WriteBRIEFMsg() . 70

1.60 bbsread.library/WriteBRKill() . 70

1.61 bbsread.library/WriteBRMessage() . 72

1.62 bbsread.library/WriteBRUser() . 76

1.63 bbsread.library/WritePassiveConfList() . 77

BBSRead.adoc 1 / 78

Chapter 1

BBSRead.adoc

1.1 bbsread.library

--background--

AppendPassiveConfList()

Archive()

BBSEventArchiver()

BBSUserData()

BufBRClose()

BufBROpen()

BufBRRead()

BufBRSeek()

BufBRWrite()

CharsetConvert()

ConfCharset()

ConfigBBS()

ConfigConf()

ConfigFArea()

ConfigGlobal()

ConfigType()

ConfLineLength()

EndOfAdding()

BBSRead.adoc 2 / 78

ExternalBBSConfig()

FindDupBRMsg()

FindOrginalNr()

FreeBRObject()

GetBBSList()

GetConfigValue()

GetConfList()

GetFAreaList()

GetGlobalConfig()

GetMarkedMsg()

GetSignature()

GetTagFile()

GetTypeList()

MakeEventPackage()

MarkMessage()

PackDataFile()

ParseGrab()

PGPBREvents()

ReadBREvent()

ReadBRFile()

ReadBRKill()

ReadBRMessage()

ReadBRUser()

ReadPassiveConfList()

ScanForGrabs()

SearchBRFile()

SearchBRMessage()

SearchBRUser()

BBSRead.adoc 3 / 78

SortMessageArray()

StartOfAdding()

TypeFromBBS()

UnArchive()

UniqueMsgFile()

UpdateBREvent()

UpdateBRMessage()

UpdateDataStruct()

WriteBREvent()

WriteBRFile()

WriteBRIEFMsg()

WriteBRKill()

WriteBRMessage()

WriteBRUser()

WritePassiveConfList()

1.2 bbsread.library/--background--

NOTES
Since this library uses functions in the dos.library, only processes
should open and use this library.

All strings passed to functions in this library should use the
standard Amiga character set (ISO). Use

CharsetConvert()
to convert

the charset of strings which is not in ISO.

The library uses two envirorment variables:
o THOR/BBSDataPath - Path to where to store the database and

configuration files.
o THOR/THORPath - Path to where the Thor system is installed. This

path *must* end with a ’:’ or a ’/’.

Progress Hooks:
Several functions support call back progress hooks. The hook is
called with a BRProgress structure as the object parameter. The
BRProgress structure is describred in <libraries/bbsread.h>. The
tags for progress hooks are global:

BR_ProgressHook - Callback hook for progress report is pointed by

BBSRead.adoc 4 / 78

(struct Hook *) ti_Data. Returning non-zero from the callback hook
will stopp the operation and in some cases make the function
return failure.

BR_ProgressUpdates - The maximum number of calls to the callback hook
for one pass is in (ULONG) ti_Data. The default is 100.

BR_ProgressReturn - Pointer to a ULONG to store the return value from
the progress hook is in (ULONG *) ti_Data.

Common configuration tags:
(Not supported by all configuration functions yet.)

BRCFG_Use - Don’t store the changes done to the configuration if
(BOOL) ti_Data is TRUE.

BRCFG_LastSaved - Will retrive the configuration last saved before
applying any changes.

1.3 bbsread.library/AppendPassiveConfList()

NAME
AppendPassiveConfList - Append to the passive conference list.

SYNOPSIS
error = AppendPassiveConfList(bbs, passConfList)
D0 A0 A1

BOOL AppendPassiveConfList(struct BBSListItem *, struct List *);

FUNCTION
Appends a list of struct PasssConfListItem to a passive conference
list. No checking for duplicates will be done. If you don’t have the
internal number for the conference, pl_BBSConfNr must be initalized
to -1.

INPUTS
bbs - Pointer to the bbs which the list should be added to.
passConfList - Pointer to a list of struct PasssConfListItem.

RESULT
error - Boolean.

EXAMPLE

NOTES

BUGS

SEE ALSO

BBSRead.adoc 5 / 78

1.4 bbsread.library/Archive()

NAME
Archive -- Add files to an archive.

SYNOPSIS
error = Archive(arcitem, archive, tagitems)
D0 A0 A1 A2

LONG Archive(struct ArcConfigItem *, STRPTR, struct TagItem *);

error = ArchiveTags(arcitem, archive, Tag1, ...)

LONG ArchiveTags(struct ArcConfigItem *, STRPTR, ULONG, ...);

FUNCTION
This function add files to an archive. The type of archiver to use is
determined with the arcitem.

The ability to return failure when the archiver fails depends on how
the archivers behave.

The tags not understood are forwarded to dos.library/SystemTagList().
Look at dos.library/SystemTagList() for futher information on tags.

INPUTS
arcitem - Pointer to struct ArcConfigItem to tell which archiver to

use.

archive - Pointer to path and name of archive to add to.
tagitems - Pointer to TagItem array. See <dos/dostags.h>. Both

dos.library/SystemTagList() tags and dos.library/CreateNewProc()
tags may be passed.

Here are the TagItem.ti_Tag values that are defined for
Archive().

AR_AddFile - File to add to archive is in (STRPTR) ti_Data. At least
one of this tag must be passed.

AR_SourceDir - Path to source directory is in (STRPTR) it_Data.
Default is to use current directory as source directory.

RESULT
error - 0 for success, result from archiver, or -1. Note that on

error, the caller is responsible for any filehandles or other
things passed in via tags.

EXAMPLE

NOTES

BUGS

SEE ALSO

BBSRead.adoc 6 / 78

1.5 bbsread.library/BBSEventArchiver()

NAME
BBSEventArchiver - Returns the EventArchiver for a bbs.

SYNOPSIS
arcitem = BBSEventArchiver(bbs)
D0 A0

struct ArcConfigItem * BBSEventArchiver(struct BBSListItem *);

FUNCTION
Returns the ArcConfigItem structure correspondig to the EventArchiver
for this bbs. If the bbs has no defined event archiver, the event
archiver for the bbs type will be returned.

Use this function instead of searching the ArcItem list by name for
the correspondig ArcConfigItem.

The ArcConfigItem structure returned is not a part of a list, so don’t
use the ac_Node. The structure must be deallocated with

FreeBRObject()
.

INPUTS
bbs - Pointer to the bbs to get the archiver to.

RESULT
arcitem - Pointer to a ArcConfigItem for the bbs. Returns a NULL

pointer on failure (IoErr() will be set) or if the bbs and type
has no defined EventArchiver.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.6 bbsread.library/BBSUserData()

NAME
BBSUserData -- Return the prefered userdata for a BBS.

SYNOPSIS
userdata = BBSUserData(globals, bbs)
D0 A0 A1

struct UserData * BBSUserData(struct GlobalConfig *,
struct BBSListItem *);

BBSRead.adoc 7 / 78

FUNCTION
Get the prefered userdata for a bbs. The data is returned in a structure.
The structure *must* be freed with

FreeBRObject()
.

INPUTS
globals - Pointer to your copy of the global configuration.
bbs - Pointer to BBSListItem for BBS to get UserData for. Can be a

NULL-pointer.

RESULT
userdata - Filled out UserData structure. NULL on failure.

EXAMPLE

NOTES
The pointers in the UserData structure is a copy of the pointers in
either GlobalConfig or BBSData. Therefore, the ponters are only valid
as long as you don’t free or update any of these structures.

BUGS

SEE ALSO

1.7 bbsread.library/BufBRClose()

NAME
BufBRClose -- Close a file used with BBSRead buffering.

SYNOPSIS
success = BufBRClose(fileid)
D0 A0

BOOL BufBRClose(APTR);

FUNCTION
Close a file opened by

BufBROpen()
.

INPUTS
fileid - Fileid for file to close.

RESULT
success - Boolean.

EXAMPLE

NOTES

BUGS

SEE ALSO

BBSRead.adoc 8 / 78

1.8 bbsread.library/BufBROpen()

NAME
BufBROpen -- Open a BBSRead buffered file for input or output.

SYNOPSIS
fileid = BufBROpen(name, accessMode)
D0 A0 D0

APTR BufBROpen(STRPTR, LONG);

FUNCTION
The named file is prepared to be used for input or output through the
BBSRead buffering system. All files are opened in shared mode. Uses
the same mode constants as dos.library/Open().

BBSRead buffered files should *not* be used when you want to read and
write large blocks.

BBSRead buffered files should *not* be written to by processes not
using

BufBRWrite()
.

INPUTS
name - Name of file to open.
accessMode - Mode to open file in.

RESULT
fileid - The fileid for the opened file. Returns a NULL pointer if

the open failed, and a secondary error code will be available in
IoErr().

EXAMPLE

NOTES
The fileid returned is *not* compatible with the file handler
returned by dos.library/Open().

BUGS

SEE ALSO

1.9 bbsread.library/BufBRRead()

NAME
BufBRRead -- Read from a BBSRead buffered file.

BBSRead.adoc 9 / 78

SYNOPSIS
actialLength = BufBRRead(fileid, buffer, length)
D0 A0 A1 D0

LONG BufBRRead(APTR, APTR, LONG);

FUNCTION
Read from a file buffered with the bbsread buffer system.

INPUTS
fileid - APTR to BBSRead file handler.
buffer - Pointer to buffer.
length - Length to read.

RESULT
actualLength - Actual length read. A value of 0 means EOF, and errors
are indicated with -1. See IoErr() for error specification.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.10 bbsread.library/BufBRSeek()

NAME
BufBRSeek -- Set the current position for a BBSRead buffered file.

SYNOPSIS
oldPosition = BufBRSeek(fileid, position, mode)
D0 A0 D0 D1

LONG BufBRSeek(APTR, LONG, LONG);

FUNCTION
Sets the read/write cursor for a BBSRead buffered file. Works like
dos.library/Seek().

INPUTS
fileid - APTR to BBSRead file handler.
position - Position to seek to.
mode - Seek mode. (Same as dos.library/Seek().)

RESULT
oldPosition - Old position in file. Returns -1 on error.

EXAMPLE

NOTES

BUGS

BBSRead.adoc 10 / 78

SEE ALSO
dos.library/Seek()

1.11 bbsread.library/BufBRWrite()

NAME
BufBRWrite -- Write to a BBSRead buffered file.

SYNOPSIS
actialLength = BufBRWrite(fileid, buffer, length)
D0 A0 A1 D0

LONG BufBRWrite(APTR, APTR, LONG);

FUNCTION
Write to a file buffered with the bbsread buffer system.

INPUTS
fileid - APTR to BBSRead file handler.
buffer - Pointer to buffer.
length - Length to write.

RESULT
actualLength - Actual length written. Errors are indicated with -1.

See IoErr() for error specification.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.12 bbsread.library/CharsetConvert()

NAME
CharsetConvert -- Converts strings from and to the ISO charset.

SYNOPSIS
success = CharsetConvert(fromchar, tochar, frombuf, tobuf, len)
D0 D1 D2 A0 A1 D3

BOOL CharsetConvert(UBYTE, UBYTE, STRPTR, STRPTR, ULONG);

FUNCTION
Converts strings of charset fromchar in frombuf to strings of charset
tochar in tobuf. Available charsets are BRCS_ISO, BRCS_IBN, BRCS_SF7,
BRCS_NO7, BRCS_DE7.

INPUTS
fromchar - The charset used in frombuf.

BBSRead.adoc 11 / 78

tochars - The charset to convert to.
frombuf - The buffer with the string(s) to convert.
tobuf - The buffer to put the result of the convertion. The size of

the buffer must be equal to the size of the frombuf. If this
pointer is NULL, the result will be put in frombuf.

len - Number of bytes to convert. If this parameter is 0L, the
0-terminated string in frombuf will be converted.

RESULT
success - Boolean.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.13 bbsread.library/ConfCharset()

NAME
ConfCharset -- Returns which charset the bbs has in this conf.

SYNOPSIS
charset = ConfCharset(bbs, conf)
D0 A0 A1

UBYTE ConfCharset(struct BBSListItem *, struct ConfListItem *);

FUNCTION
Use this function to obtain which charset the mesages in a conf from
the BBS is expected to be in.

The character set expected for a BBS can be obtained by using a NULL
pointer as the conf parameter.

INPUTS
bbs - BBS to obtain charset for.
conf - Conf to obtain charset for.

RESULT
charset - Charset expected for this conf.

EXAMPLE

NOTES

BUGS

SEE ALSO

BBSRead.adoc 12 / 78

1.14 bbsread.library/ConfigBBS()

NAME
ConfigBBS -- Set up the configuratin for a BBS.

SYNOPSIS
newbbs = ConfigBBS(bbs, tagitems)
D0 A0 A1

struct BBSListItem * ConfigBBS(struct BBSListItem *,
struct TagItem *);

newbbs = ConfigBBSTags(bbs, Tag1, ...)

struct BBSListItem * ConfigBBSTags(struct BBSListItem *, ULONG,
...);

FUNCTION
Changes the setup for a BBS, or adds a new BBS to the database.

INPUTS
bbs - Pointer to the BBSListItem for the bbs to change configuration

for. If this pointer is a NULL pointer, a new bbs will be
created. The contents of bbs->bl_Data will be updated and string
pointers may change.

tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
ConfigBBS().

BC_DeleteBBS - Markes the BBS pointed by the bbs parameter as deleted
if (BOOL) ti_Data is TRUE. Your BBSListItem passed as the bbs
parameter will be removed from your bbslist. The pointer returned
is the old bbs pointer, but it will not point to a BBSListItem any
more.

BC_BBSList - Your BBSList-header is pointed by (struct List *)
ti_Data. This is the pointer returned from

GetBBSList()
. When

adding a new BBS to the database this tag *must* be supplied.
It *must* also be supplied when using the BC_Top, BC_Bottom,
BC_Up, BC_Down, BC_SortBBSList and BC_NewBBSOrder tags.

BC_BBSName - The new name of the BBS is pointed by (STRPTR) ti_Data.
BC_GrabName - The new name of the grabfile (without extension) is

pointed by (STRPTR) ti_Data. Wildcards are supported. If
wildcards are used, must the name match the full file name.

BC_BBSType - The new type of the BBS is pointed by (STRPTR) ti_Data.
If no BBSType with this name is defined, the funktion will fail.

BC_UserName - The new name the user is registered as is pointed by
(STRPTR) ti_Data.

BC_ScriptFlags - Flags for the script is in (LONGBITS) ti_Data. Check

BBSRead.adoc 13 / 78

the BBS type for available flags. Non-available flags passed will
be ignored.

BC_Signature - Signature to use on this BBS is pointed by (STRPTR)
ti_Data. This signature should be used in conferences whith no
signature defined. A NULL-pointer equals no BBS signature, and the
global signature should be used on this BBS. If the signature is
in a file, this tag should contain the complete path to the
signature file, and the BDF_FILE_SIGNATURE flag must be set.

BC_Top - Move the BBS to the top of the list if (BOOL) ti_Data is
TRUE. Both your local and the global list will be updated. Be
sure to also pass the BC_BBSList tag.

BC_Bottom - Move the BBS to the bottom of the list if (BOOL) ti_Data
is TRUE. Both your local and the global list will be updated. Be
sure to also pass the BC_BBSList tag.

BC_Up - Move the BBS one position upwards on the list if (BOOL)
ti_Data is TRUE. Both your local and the global list will be
updated. Be sure to also pass the BC_BBSList tag.

BC_Down - Move the BBS one position downwards on the list if (BOOL)
ti_Data is TRUE. Both your local and the global list will be
updated. Be sure to also pass the BC_BBSList tag.

BC_SortBBSList - Sort the BBS-list alphabetically if (BOOL) ti_Data is
TRUE. Both your local and the global list will be sorted. Be sure
to also pass the BC_BBSList tag.

BC_KeepMessages - Messages to keep in each conference when it’s
packed is in (ULONG) ti_Data.
BBSData->bd_Flags affecting the use of this value:
- BDF_IGNORE_KEEPMSG: Messages won’t be counted when packing

conferences.
- BDF_GLOBAL_KEEPMSG: The Global KeepMsg value will be used on

this BBS. The BC_KeepMessages value will be stored, but it
will be ignored.

BC_KeepTime - How old messages to keep in each conference when it’s
packed is in (ULONG) ti_Data. The time is in seconds.
BBSData->bd_Flags affecting the use of this value:
- BDF_IGNORE_KEEPTIME: Time won’t be checked when packing

conferences.
- BDF_GLOBAL_KEEPTIME: The Global KeepTime value will be used on

this BBS. The BC_KeepTime value will be stored, but it
will be ignored.

BC_SetBBSFlags - BBS flags to set is in (LONGBITS) ti_Data. See
<libraries/bbsread.h> for documentation on each flag.

BC_ClearBBSFlags - BBS flags to clear is in (LONGBITS) ti_Data.

BC_EMailAddr - The address the user is registered with is pointed by
(STRTPR) ti_Data. This is used to check if a message is to the
user. This address will be ignored if the BBSType for this has
the TDF_NO_ADDR_CHECK flag set.

BBSRead.adoc 14 / 78

BC_XpkMethod - BBS Xpk method to use is pointed by (STRPTR) ti_Data.
If BC_XpkMethod is set to NULL, the global Xpk method will be
used for this bbs. BBSData->bd_Flags affecting the use of this
value:
- BDF_NO_XPK_METHOD: Don’t use Xpk on this bbs.

BC_CharSet - The expected charset for the grabs from this bbs is in
(UBYTE) ti_Data. Setting BC_CharSet to BRCS_ANY will use the
default charset for the BBSType to this bbs. Default charset when
adding a new bbs is BRCS_ANY.

BC_LineLength - Max linelength of messages for this bbs is (UWORD)
ti_Data. Overrides the setting in the BBSType for this bbs if
BC_LineLength is non 0.

BC_UserStreet - User street address is pointed by (STRPTR) ti_Data.
Overrides settings in global configuration if non-NULL.

BC_UserAddress - User address is is pointed by (STRPTR) ti_Data.
Overrides settings in global configuration if non-NULL.

BC_UserCountry - User country is is pointed by (STRPTR) ti_Data.
Overrides settings in global configuration if non-NULL.

BC_UserPhone - User phone number is pointed by (STRPTR) ti_Data.
Overrides settings in global configuration if non-NULL.

BC_Alias - Alias used on this BBS is pointed by (STRPTR) ti_Data.
If the alias is set and a conference on this bbs is defined as
CDF_ALIAS, the aliaswill be used to determine if messages are
to/from the user in the particular conference.

BC_DnloadPath - Download path for this BBS is pointed by (STRPTR)
ti_Data. Overrides settings in global configuration if non-NULL.

BC_TagFile - Path and name of tagfile to use for this bbs is pointed
by (STRPTR) ti_Data. Overrides settings in global configuration
if non-NULL.

BC_EventArchiver - Archiver to use when packing the events from this
bbs is pointed by (STRPTR) ti_Data. Overrides settings in BBSType
if non-NULL.

BC_ReplyPacket - Filename of replypacket is pointed by (STRPTR)
ti_Data. The filename is expected to be relative to the defined
upload directory for this bbs.

BC_UploadPath - Upload path for this BBS is pointed by (STRPTR)
ti_Data. Overrides settings in global configuration if non-NULL.

BC_NewBBSOrder - Rearrange the order of the bbses according to the
list given in the BC_BBSList tag if (BOOL) ti_Data is TRUE.

BC_QuoteType - Prefered quote type for this bbs is in (UBYTE)
ti_Data. Overrides settings in bbstype if not QT_USE_SUPER.
See <libraries/BBSRead.h> for definitions of quote types.

BBSRead.adoc 15 / 78

BC_QuoteChars - String to use as quote chars in custom quote type is
in (STRPTR) ti_Data. Max length of the string is 3. Overrides
globaly defined quote chars if NULL or 0 length.

BC_ReplyString - Reply string to use when a message is replied _and_
moved is in (STRPTR) ti_Data. Overrides globaly defined reply
string if non NULL.

BC_BBSEnterScript - Name of Arexx script to be run each time this bbs
is entered is pointed by (STRPTR) ti_Data. Overrides globaly
defined enter script if non NULL.

BC_BBSLeaveScript - Name of Arexx script to be run each time this bbs
is left is pointed by (STRPTR) ti_Data. Overrides globaly
defined leave script if non NULL.

BC_ConfEnterScript - Name of Arexx script to be run each time a
conference on this bbs is entered is pointed by (STRPTR) ti_Data.
Overrides globaly defined enter script if non NULL.

BC_ConfLeaveScript - Name of Arexx script to be run each time a
conference on this bbs is left is pointed by (STRPTR) ti_Data.
Overrides globaly defined leave script if non NULL.

RESULT
newbbs - When changing an existing bbs, this is the same as the bbs

parameter. When adding a new bbs, this points to a BBSListItem
for the new BBS. On failure, a NULL pointer is returned.

EXAMPLE

NOTES
When adding a BBS, the BBSListItem for this BBS will automatically be
inserted in the list supplied with the BC_BBSList tag. Therefore, be
sure the list is not attached to a ListView or simular when calling
this function. The same applies when deleting BBS’es and when
rearranging the bbslist.

You *must* supply BC_BBSName and BC_BBSType when adding a new BBS to
the database.

As of V4 is BC_GrabName no longer needed when adding a BBS.

When adding new BBS’es will BC_Top, BC_Bottom, BC_Up, BC_Down,
BC_SortBBSList and BC_NewBBSOrder be ignored.

These flags are automatically set when adding a new bbs:
BDF_GLOBAL_KEEPMSG | BDF_GLOBAL_KEEPTIME | BDF_IGNORE_KEEPMSG
| BDF_IGNORE_KEEPTIME.

BUGS

SEE ALSO

GetBBSList()

BBSRead.adoc 16 / 78

1.15 bbsread.library/ConfigConf()

NAME
ConfigConf -- Set up the configuration for a conference.

SYNOPSIS
newconf = ConfigConf(conf, tagitems)
D0 A0 A1

struct ConfListItem * ConfigConf(struct ConfListItem *,
struct TagItem *);

newconf = ConfigConfTags(conf, Tag1, ...)

struct ConfListItem * ConfigConfTags(struct ConfListItem *, ULONG,
...);

FUNCTION
Changes the setup for a conference, or adds a new conference to a
bbs. Only conferences where messages are expected should be added.
Use

WritePassiveConfList()
for complete conference lists.

INPUTS
conf - Pointer to the ConfListItem for the conference to change

configuration for. If this pointer is a NULL pointer, a new
conference will be added to the bbs. The contents of
conf->cl_Data will be updated and string pointers may change.

tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
ConfigConf().

CC_DeleteConf - Markes the Conf pointed by the conf parameter as
deleted if (BOOL) ti_Data is TRUE. Your ConfListItem passed as
the conf parameter will be removed from your conflist. The
pointer returned is the old conf pointer, but it will not point
to a ConfListItem any more.

CC_ConfList - Your ConfList-header is pointed by (struct List *)
ti_Data. This is the pointer returned from

GetConfList()
. When

adding a new conference to a bbs, this tag *must* be supplied.
It *must* also be supplied when using the CC_Top, CC_Bottom,
CC_Up, CC_Down, CC_SortConfList and CC_NewConfOrder tags.

CC_AddToBBS - The BBSListItem to add a conference to is pointed
by (struct BBSListItem *) ti_Data. *Must* be used when adding
a conference, and is ignored when changing the setup on a
existing conference.

CC_ConfName - The new name of the conference is pointed by
(STRPTR) ti_Data. This tag must be supplied when adding a
conference.

BBSRead.adoc 17 / 78

CC_SetConfFlags - Conference flags to set is in (LONGBITS) ti_Data.
CC_ClearConfFlags - Conference flags to clear is in

(LONGBITS) ti_Data.

CC_Signature - Signature to use in this conference is pointed by
(STRPTR) ti_Data. A NULL-pointer equals no conference signature.
The BBS signature should be used instead. If the signature is in
a file, this tag should contain the complete path to the
signature file, and the CDF_FILE_SIGNATURE flag must be set.

CC_KeepMessages - Messages to keep in this conference when it’s
packed is in (ULONG) ti_Data.
ConfData->cd_Flags affecting the use of this value:
- CDF_IGNORE_KEEPMSG: Messages won’t be counted when packing

this conference.
- CDF_BBS_KEEPMSG: The BBS KeepMsg value will be used in when

packing this conference. The CC_KeepMessages value will be
stored, but it will be ignored.

CC_KeepTime - How old messages to keep in this conference when it’s
packed is in (ULONG) ti_Data. The time is in seconds.
ConfData->cd_Flags affecting the use of this value:
- CDF_IGNORE_KEEPTIME: Time won’t be checked when packing

this conference.
- CDF_BBS_KEEPTIME: The BBS KeepTime value will be used when

packing this conference. The CC_KeepTime value will be stored,
but it will be ignored.

CC_Top - Move the conference to the top of the list if (BOOL) ti_Data
is TRUE. Both your local and the global list will be updated. Be
sure to also pass the CC_ConfList tag.

CC_Bottom - Move the conference to the bottom of the list if (BOOL)
ti_Data is TRUE. Both your local and the global list will be
updated. Be sure to also pass the CC_ConfList tag.

CC_Up - Move the conference one position upwards on the list if
(BOOL) ti_Data is TRUE. Both your local and the global list will
be updated. Be sure to also pass the CC_ConfList tag.

CC_Down - Move the conference one position downwards on the list if
(BOOL) ti_Data is TRUE. Both your local and the global list will
be updated. Be sure to also pass the CC_ConfList tag.

CC_Alias - Alias to use in this conference is pointed by (STRPTR)
ti_Data. If the alias is set and the conference is defined as
CDF_ALIAS, it will be used to determine if messages are to/from
the user in this particular conference. Overrides settings in
BBSData if non-NULL.

CC_BBSConfNr - The internal number this conference has on the BBS is
in (LONG) ti_Data. This value is meant to ease the parsing and
packing when numbers must be used for the conferences.

CC_SortConfList - Sort the Conf-list alphabetically if (BOOL) ti_Data
is TRUE. Both your local and the global list will be sorted. Be

BBSRead.adoc 18 / 78

sure to also pass the CC_ConfList tag. You must also pass a
valid conf parameter to use this tag.

CC_XpkMethod - Conf Xpk method to use is pointed by (STRPTR) ti_Data.
If CC_XpkMethod is set to NULL will the bbs Xpk method be used
for this conf. ConfData->cd_Flags affecting the use of this value:
- CDF_NO_XPK_METHOD: Don’t use Xpk on this conf.

CC_CharSet - The expected charset for the grabs from this conf is in
(UBYTE) ti_Data. Setting CC_CharSet to BRCS_ANY will use the
default charset for this bbs. Default charset when adding a
newconf is BRCS_ANY.

CC_LineLength - Max linelength of messages for this conf is (UWORD)
ti_Data. Overrides the setting for this bbs if CC_LineLength is
non 0.

CC_TagFile - Path and name of tagfile to use for this conf is pointed
by (STRPTR) ti_Data. Overrides settings on bbs if non-NULL.

CC_EmailAddr - The email address the user has in this conference is
pointed by (STRTPR) ti_Data. This is used to check if a message
is to the user. Overrides setting in BBSData. This address will
be ignored if the BBSType for this has the TDF_NO_ADDR_CHECK flag
set. This tag is for use on bbses where the user is member of
more than one net.

CC_NewConfOrder - Rearrange the order of the conferences according to
the list given in the CC_ConfList tag if (BOOL) ti_Data is TRUE.

CC_QuoteType - Prefered quote type for this conference is in (UBYTE)
ti_Data. Overrides settings on the bbs if not QT_USE_SUPER.
See <libraries/BBSRead.h> for definitions of quote types.

CC_QuoteChars - String to use as quote chars in custom quote type is
in (STRPTR) ti_Data. Max length of the string is 3. Overrides
quote chars for bbs if NULL or 0 length.

CC_ReplyString - Reply string to use when a message is replied _and_
moved is in (STRPTR) ti_Data. Overrides reply string defined for
the bbs if non NULL.

CC_ConfEnterScript - Name of Arexx script to be run each time this
conference is entered is pointed by (STRPTR) ti_Data. Overrides

enter script defined for the bbs if non NULL.

CC_ConfLeaveScript - Name of Arexx script to be run each time this
conference is left is pointed by (STRPTR) ti_Data. Overrides
leave script defined for the bbs if non NULL.

CC_ConfNetType - Which type of network this conference is connected to
is in (UBYTE) ti_Data. This tag is to be used on BBS’es of BBS
types which supports several network types. The default value is
CDNT_NONET. See <libraries/BBSRead.h> for definitions. New
definitions are added on request. No need to use this tag if the
bbs type only supports one network.

BBSRead.adoc 19 / 78

RESULT
newconf - When changing an existing conference, this is the same as

conf parameter. When adding a new conference this points to a
ConfListItem for this conference. On failure a NULL pointer
is returned.

EXAMPLE

NOTES
When adding a conference, the ConfListItem for this conference will
automaticaly be inserted in the list supplied with the CC_ConfList
tag. Therefore, be sure the list is not attached to a ListView or
simular when calling this function. The same applies when deleting
conferences and when rearranging the conference list.

When adding new conferences will CC_Top, CC_Bottom, CC_Up, CC_Down,
CC_SortConfList and CC_NewConfOrder be ignored.

These flags are automatically set when adding a new conference:
CDF_BBS_KEEPMSG | CDF_BBS_KEEPTIME | CDF_IGNORE_KEEPMSG
| CDF_IGNORE_KEEPTIME.

BUGS

SEE ALSO

GetConfList()

1.16 bbsread.library/ConfigFArea()

NAME
ConfigFArea -- Set up the configuration for a file area.

SYNOPSIS
newfarea = ConfigFArea(farea, tagitems)
D0 A0 A1

struct FAreaListItem * ConfigFArea(struct FAreaListItem *,
struct TagItem *);

newfarea = ConfigFAreaTags(farea, Tag1, ...)

struct FAreaListItem * ConfigFAreaTags(struct FAreaListItem *,
ULONG, ...);

FUNCTION
Changes the setup for a file area, or adds a new file area to the
database.

INPUTS
farea - Pointer to FAreaListItem for the file area to change

configuration for. If this pointer is a NULL pointer, a new file
area will be created.

tagitems - Pointer to TagItem array.

BBSRead.adoc 20 / 78

Here are the TagItem.ti_Tag values that are defined for
ConfigFArea().

CFA_DeleteFArea - Markes the file area pointed by the farea parameter
as deleted if (BOOL) ti_Data is TRUE. Your FAreaListItem passed
as the farea parameter will be removed from your farealist. The
pointer returned is the old fareapointer, but it will not point
to a FAreaListItem any more.

CFA_FAreaList - Your FAreaList-header is pointed by (struct List *)
ti_Data. This is the pointer returned from

GetFAreaList()
. When

adding a new file area to the database, this tag *must* be
supplied. It *must* also be supplied when using the CFA_Top,
FCA_Bottom, CFA_Up, CFA_Down and CFA_SortFAreaList tags.

CFA_AddToBBS - The BBSListItem to add a file area to is pointed
by (struct BBSListItem *) ti_Data. *Must* be used when adding
a file area, and is ignored when changing the setup on a
existing file area.

CFA_Name - The new name of the file area is pointed by (STRPTR)
ti_Data.

CFA_Top - Move the file area to the top of the list if (BOOL) ti_Data
is TRUE. Both your local and the global list will be updated. Be
sure to also pass the CFA_FAreaList tag.

CFA_Bottom - Move the file area to the bottom of the list if (BOOL)
ti_Data is TRUE. Both your local and the global list will be
updated. Be sure to also pass the CFA_FAreaList tag.

CFA_Up - Move the file area one position upwards on the list if (BOOL)
ti_Data is TRUE. Both your local and the global list will be
updated. Be sure to also pass the CFA_FAreaList tag.

CFA_Down - Move the file area one position downwards on the list if
(BOOL) ti_Data is TRUE. Both your local and the global list will
be updated. Be sure to also pass the CFA_FAreaList tag.

CFA_SortFAreaList - Sort the file area list alphabeticaly if (BOOL)
ti_Data is TRUE. Both your local and the global list will be
sorted. Be sure to also pass the CFA_FAreaList tag.

RESULT
newfarea - When changing an existing file area, this is the same as

the farea parameter. When adding a new file area, this points to a
FAreaListItem for this new file area. On failure, a NULL pointer
is returned.

EXAMPLE

NOTES
When adding a file area, the FAreaListItem for this file area will
automaticaly be inserted in the list supplied with the CFA_FAreaList

BBSRead.adoc 21 / 78

tag. Therefore be sure the list is not attached to a ListView or
simular when calling this function. The same applies when deleting
file areas and when rearranging the bbslist.

You *must* supply CFA_Name when adding a new file area.

When adding new areas will CFA_Top, FCA_Bottom, CFA_Up, CFA_Down and
CFA_SortFAreaList be ignored.

BUGS

SEE ALSO

1.17 bbsread.library/ConfigGlobal()

NAME
ConfigGlobal -- Global configuration for the library.

SYNOPSIS
success = ConfigGlobal(globals, tagitems)
D0 A0 A1

BOOL ConfigGlobal(struct GlobalConfig *, struct TagItem *);

success = ConfigGlobalTags(globals, Tag1, ...)

BOOL ConfigGlobalTags(struct GlobalConfig *, ULONG, ...);

FUNCTION
This function sets up the global configuration for the library. Your
copy of the clobal configuration will also be updated. Supports
BRCFG_Use and BRCFG_LastSaved tags.

INPUTS
globals - Pointer to global data got from

GetGlobalConfig()
. The

contents of globals will be updated and string pointers may
change.

tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
ConfigGlobal().

CG_DnloadPath - Path to where downloaded files reside is pointed
by (STRPTR) ti_Data.

CG_UploadPath - Path to where files to be uploaded reside is pointed
by (STRPTR) ti_Data.

CG_Buffers - Number of buffers to use in buffer system in
(ULONG) ti_Data. 13 buffers is the default in the current version..

CG_BufferSize - Size of each buffer the buffer system should use in

BBSRead.adoc 22 / 78

(ULONG) ti_Data. 5096 bytes is the default in the currect version.

CG_ConfigArchiver - Configure archiver. Name of archiver is in
(STRPTR) ti_Data.

CG_ArcPattern - MatchPattern to recognize archives of
CG_ConfigArchiver type is in (STRPTR) ti_Data. If the ArcPattern
begins with ’$’, the rest of the string will be matched with the
contents of the archive instead of the filename.
i.e. $????2d6c68 finds LhA-archives.

CG_UnArcCmd - Command to depack an archive of CG_ConfigArchiver type
is in (STRPTR) ti_Data. If the unpack program isn’t in c:, the
full path must be given. The file to be unpacked will be appended
to the command given here..

CG_ArcCmd - Command to pack an archive of CG_ConfigArchiver type is in
(STRPTR) ti_Data. The command is expected to use the standard
archiver organization of the arguments. If the archive program
isn’t in c:, the full path must be given.

CG_DeleteArchiver - Delete archiver which name is in (STRPTR) ti_Data.
The deletion will fail if one bbstype uses this archiver as an
eventarchiver.

CG_Signature - Global signature is in (STRPTR) ti_Data. This signature
should be used on BBS’es where no signatures is defined. Can be a
NULL-pointer. If the signature is in a file, this tag should
contain the complete path to the signature file, and the
GCF_FILE_SIGNATURE flag must be set.

CG_KeepMessages - Messages to keep in each conference when they are
packed is in (ULONG) ti_Data.
GlobalConfig->gc_Flags affecting the use of this value:
- GCF_IGNORE_KEEPMSG: Messages won’t be counted when packing

conferences.

CG_KeepTime - How old messages to keep in each conference when they
are packed is in (ULONG) ti_Data. The time is in seconds.
GlobalConfig->gc_Flags affecting the use of this value:
- GCF_IGNORE_KEEPTIME: Time won’t be checked when packing

conferences.

CG_SetGlobalFlags - Global flags to set is in (LONGBITS) ti_Data.
CG_ClearGlobalFlags - Global flags to clear is in (LONGBITS) ti_Data.

CG_XpkMethod - Global Xpk method to use is pointed by (STRPTR)
ti_Data. GlobalConfig->gc_Flags affecting the use of this value:
- GCF_NO_XPK_METHOD: Don’t use Xpk globaly.

CG_UserPhone - Phone number for user is pointed by (STRPTR) ti_Data.
CG_TmpDir - Name of temporary directory to use when packing data is

pointed by (STRPTR) ti_Data.

CG_TagFile - Path and name of tagfile to use globaly is pointed by
(STRPTR) ti_Data.

BBSRead.adoc 23 / 78

CG_BufCopyBack - Sets file buffer system to copyback mode if (BOOL)
ti_Data is TRUE. In copyback mode, changed buffers will only
be written back to to file when they are flushed from memory.
Each call to ConfigGlobal() with the CG_BufCopyBack tag *must*
be coupled with a call to ConfigGlobal() with the
CG_BufEndCopyBack tag. The copyback mode should be used while
adding large amount of data to the library. (Eg. parsing a
grabfile and adding the messages to the database) The use of the
CG_BufCopyBack/G_BufEndCopyBack tags can be nested.

CG_BufEndCopyBack - Turns off copyback mode for file buffer system if
(BOOL) ti_Data is TRUE.

CG_HitRate - Buffer hitrate is returned in *((ULONG *) ti_Data). The
hitrate is in percent.

CG_ReadHitRate - Buffer read hitrate is returned in *((ULONG *)
ti_Data). The hitrate is in percent.

CG_WriteHitRate - Buffer write hitrate is returned in *((ULONG *)
ti_Data). The hitrate is in percent.

CG_ClearHitRate - Clear internal hitrate statistics if (BOOL)
ti_Data is TRUE

CG_HazeLevel1 - Keep messages marked with haze level 1 at least
(ULONG) ti_Data seconds.

CG_HazeLevel2 - Keep messages marked with haze level 2 at least
(ULONG) ti_Data seconds.

CG_HazeLevel2 - Keep messages marked with haze level 3 at least
(ULONG) ti_Data seconds.

CG_PGPCommand - Command for pgp (with path) is pointed by (STRPTR)
ti_Data.

CG_PGPSignID - Id to use when PGP signing messages is pointed by
(STRPTR) ti_Data. If NULL should ’*’ be used as sign id.

CG_QuoteChars - String to use as quote chars in custom quote type is
in (STRPTR) ti_Data. Max length of the string is 3.

CG_ReplyString - Reply string to use when a message is replied _and_
moved is in (STRPTR) ti_Data.

CG_StartupScript - Name of Arexx script to be run each time Thor is
started is pointed by (STRPTR) ti_Data.

CG_QuitScript - Name of Arexx script to be run each time Thor is
quited is pointed by (STRPTR) ti_Data.

CG_BBSEnterScript - Name of Arexx script to be run each time a bbs
is entered is pointed by (STRPTR) ti_Data.

CG_BBSLeaveScript - Name of Arexx script to be run each time a bbs
is left is pointed by (STRPTR) ti_Data.

BBSRead.adoc 24 / 78

CG_ConfEnterScript - Name of Arexx script to be run each time a
conference is entered is pointed by (STRPTR) ti_Data.

CG_ConfLeaveScript - Name of Arexx script to be run each time a
conference is left is pointed by (STRPTR) ti_Data.

CG_BufFreeAllocated - Free most memory allocated for buffers if
(BOOL) ti_Data is TRUE. The memory will be reallocated when
needed.

RESULT
success - Boolean.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.18 bbsread.library/ConfigType()

NAME
ConfigType -- Set up the configuratin for a BBS type.

SYNOPSIS
newtype = ConfigType(type, tagitems)
D0 A0 A1

struct TypeListItem * ConfigType(struct TypeListItem *,
struct TagItem *);

newtype = ConfigTypeTags(type, Tag1, ...)

struct TypeListItem * ConfigTypeTags(struct TypeListItem *,
ULONG, ...);

FUNCTION
Changes the definitions for a BBS type, or adds a new BBS type to the
database.

INPUTS
type - Pointer to the TypeListItem for the BBS type to change

configuration for. If this pointer is a NULL pointer, a new type
will be created. The contents of type->tl_Data will be updated
and string pointers may change.

tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
ConfigType().

BBSRead.adoc 25 / 78

CT_DeleteType - Markes the BBS type pointed by the type parameter as
deleted if (BOOL) ti_Data is TRUE. The deletion of the type will
fail if it is used by any BBS’es.

CT_TypeList - Your TypeList-header is pointed by (struct List *)
ti_Data. This is the pointer returned from

GetTypeList()
. When

adding a new BBS type to the database, this tag *must* be
supplied. When changing the setup on exixting BBS types this tag
is ignored.

CT_TypeName - The new name of the BBS type is pointed by (STRPTR)
ti_Data.

CT_LineLength - Max length of lines in messages in (UWORD) ti_Data.
CT_SubjectLength - Max length of subjects in (UWORD) ti_Data.
CT_FileDescrLen - Max length of short filedescription in (UWORD)

ti_Data.

CT_ConfigEvent - Set up an event this bbs type support. The event
identifier is in (ULONG) ti_Data. More than one event can be
set up in each call.

CT_EventNeedTags - Set up what tags the event in the last
CT_ConfigEvent needs. The tags needed is in a TAG_END-terminated
array pointed by (ULONG *) ti_Data.

CT_EventOptTags - Set up what tags that are optional for the event
in the last CT_ConfigEvent. The optional tags is in a TAG_END-
terminated array pointed bt (ULONG *) ti_Data.

CT_DeleteEvent - Delete event with (ULONG) ti_Data identifier from
list of supported events.

CT_CharSet - The default charset the grab from this BBS type uses is
in (UBYTE) ti_Data. Default charset when adding a new BBS type is
BRCS_ISO. See <libraries/BBSRead.h> for available charsets.

CT_MsgParser - Command to parse the grabs from a BBS of this type is
in (STRPTR) ti_Data. The command must take the following
parameters: BBSNAME - name of bbs. GRAB - name of grab, including
path. ARCHIVE - Switch, the grab is an archive. DELETE - Switch,
delete the grab afterwards if the adding is successful. PUBSCREEN
- Name of public screen to open any progress windows on. These
parameters must be there even if it is not used by the parser.
See <ParseMsg/ParseMsg.c> for more info.

CT_AvailScrFlags - Mask for available scriptflags in (LONGBITS)
ti_Data.

CT_FileNameLen - Max length of filenames allowed on this BBS type is
in (UWORD) ti_Data. All characters in the filename are counted.

CT_EventPacker - Command to pack events in a package to send to the
BBS is in (STRPTR) ti_Data. A NULL-pointer equals no packing of
events on this BBS type. The execution of this command should be

BBSRead.adoc 26 / 78

done on user request by the program which makes the events. The
command should take the following parameters: BBSNAME - name of
bbs. No more parameters defined so far. PUBSCREEN - Name of
public screen to open evt. progress windows on. This parameter
must be there even if it is not used by the packer.

CT_EventArchiver - Prefered archiver to use on event package is in
(STRPTR) ti_Data. A NULL-pointer equals no archiving of the
eventpackage. The archiver *must* have been configured in
global configuration.

CT_SetTypeFlags - BBSType flags to set is in (LONGBITS) ti_Data.
CT_ClearTypeFlags - BBSType flags to clear is in (LONGBITS) ti_Data.
CT_AcceptPattern - Pattern to use when accepting grabs for this

bbstype is pointed by (STRPTR) ti_Data. A NULL pointer equals
to a pattern of #?.

CT_InitMsgFile - Command to initialize a message files is in (STRPTR)
ti_Data. A NULL-pointer equals to no initializing other than just
creating the file. This command is used by

UniqueMsgFile()
. The

command must exept the following parameters:
BBSNAME/A - Name of bbs the message is for.
FILENAME/A - Name of file to initialized. (The file is already

created.)
EVENT/N/A - What event type it should be used in.
USETAG/N/A - What message tag it should be used for.

CT_ExtConfig - Command to do external configuration for a bbs is in
(STRPTR) ti_Data. A NULL-pointer equals to no external
configuration. The command must exept the following parameters:

BBSNAME/A - Name of bbs to configure.
CONFNAME - Name of current conference.
PUBSCREEN - Name of public screen to use for windows.

CT_QuoteType - Prefered quote type for this bbs type is in (UBYTE)
ti_Data. See <libraries/BBSRead.h> for definitions of quote types.

RESULT
newtype - When changing an existing BBS type, this is the same as the

type parameter. When adding a new BBS type this points to a
TypeListItem for this new BBS type. On failure a NULL pointer is
returned.

EXAMPLE

NOTES
When adding a BBS type, the TypeListItem for this BBS type will
automatically be inserted in the list supplied with the CT_TypeList
tag. Therefore, be sure the list is not attached to a ListView or
simular when calling this function. The same applies when deleting
BBS types.

You must supply the following tags when adding a new BBS type to the
database: CT_TypeList, CT_TypeName, CT_LineLength, CT_SubjectLength,
CT_MsgParser.

BBSRead.adoc 27 / 78

As of V4, CT_MsgParser is no longer needed when adding a new BBS type.

The commands given in the CT_MsgParser, CT_EventPacker,
CT_InitMsgFile and CT_ExtConfig is expected to be given with path
relative to the Thor home directory.

BUGS

SEE ALSO

GetTypeList()

1.19 bbsread.library/ConfLineLength()

NAME
ConfLineLength -- Returns max line length the bbs has in this conf.

SYNOPSIS
linelength = ConfLineLength(conf)
D0 A0

UWORD ConfLineLength(struct ConfListItem *);

FUNCTION
Use this function to obtain max line length the messages on the BBS is
expected to have in this conference.

INPUTS
conf - Conf to get max linelength for.

RESULT
linelength - Linelength expected in this conf.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.20 bbsread.library/EndOfAdding()

NAME
EndOfAdding -- Call after adding a grab. (Used by MsgParser)

SYNOPSIS
void EndOfAdding(bbs)

A0

BBSRead.adoc 28 / 78

void EndOfAdding(struct BBSListItem *);

FUNCTION
Function for MsgParser to call after finishing the parsing of a grab.
UnLocks your access to add a grab to this BBS. Makes sure 2 or more
processes do not add the same grab simultaneously.

Will also free the memory used to hold data during message adding.

Each call to
StartOfAdding()
must be coupled with a call to this

function.

INPUTS
bbs - Pointer to BBSListItem for BBS adding is finished.

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

StartOfAdding()

1.21 bbsread.library/ExternalBBSConfig()

NAME
ExternalBBSConfig -- External configuration for bbs’es.

SYNOPSIS
error = ExternalBBSConfig(bbs, tagitems)
D0 A0 A1

LONG ExternalBBSConfig(struct BBSListItem *, struct TagItem *);

error = ExternalBBSConfigTags(bbs, Tag1, ...)

LONG ExternalBBSConfigTags(struct BBSListItem *, ULONG, ...);

FUNCTION
This function calls the command for external configuration defined
in the bbstype of this bbs. If no external configuration command is
defined, this function will return success.

INPUTS
bbs - Pointer to BBSListItem for bbs.
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for

BBSRead.adoc 29 / 78

ExternalBBSConfig():

EBC_Conference - Pointer to active conference is in
(struct ConfListItem *) ti_Data. This tag may be omitted when no
conferences are active.

EBC_PublicScreen - Public screen for external configuration to open
windows on is in (STRPTR) ti_Data. When this tag is omitted
the windows will be opened on the default public screen.

RESULT
error - 0 for success, result from command, or -1.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.22 bbsread.library/FindDupBRMsg()

NAME
FindDupBRMsg -- Find duplicate messages in database.

SYNOPSIS
error = FindDupBRMsg(bbs, tagitems)
D0 A0 A1

BOOL FindDupBRMsg(struct BBSListItem *, struct TagItem *);

error = FindDupBRMsgTags(bbs, Tag1, ...)

BOOL FindDupBRMsgTags(struct BBSListItem *, ULONG, ...);

FUNCTION
Searches the database for duplicate messages.

Supports callback progress hooks tags. BRProgress->brp_Actions
will contain the number of duplicate messages found.

INPUTS
bbs - BBSListItem for the bbs to search for duplicate messages.
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
FindDupBRMsg().

FDBRM_DeleteDupInConf - Mark duplicate messages in same conference as
deleted if (BOOL) ti_Data is TRUE. Default is FALSE. The newest
message will be marked as deleted if duplicates are found.

FDBRM_UnMarkCrossPosts - Search trough unread messages and mark
crossposts as read if (BOOL) ti_Data is TRUE. Default is FALSE.

BBSRead.adoc 30 / 78

If a instance of the crossposted message is found read in the
database, all instances of it will be marked as read. If not,
only the first instance of the crossposted message will be kept
unread. (The conferences will be scanned in the same order as
your conference list.) This tag is only useful on bbs’es where
messages are identified with unique message identifiers.

RESULT
error - Boolean.

EXAMPLE

NOTES
If the message has a messageid this messageid is regarded as unique.

BUGS

SEE ALSO

1.23 bbsread.library/FindOrginalNr()

NAME
FindOrginalNr -- Find message by orginal number

SYNOPSIS
msgnr = FindOrginalNr(conf, orginalnr)

D0 A0 D1

ULONG FindOrginalNr(struct ConfListItem *, ULONG);

FUNCTION
Scans the conference for a message with the passed orginal number.

INPUTS
conf - Conference to search in.
orginalnr - Orginal number to search for.

RESULT
msgnr - The number the message has locally. Returns 0 if the orginalnr

can’t be found.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.24 bbsread.library/FreeBRObject()

BBSRead.adoc 31 / 78

NAME
FreeBRObject -- Frees an object allocated

SYNOPSIS
void FreeBRObject(object)

A0

void FreeBRObject(void *);

FUNCTION
Frees an object allocated with any of the other functions in this
library. Safe to call with a NULL pointer or a (APTR) -1 pointer.

INPUTS
object - Pointer to object to free.

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

1.25 bbsread.library/GetBBSList()

NAME
GetBBSList -- Returns a list of available BBS’es

SYNOPSIS
bbslist = GetBBSList()
D0

struct List * GetBBSList(void);

FUNCTION
Returns a Exec list of the available BBS’es. This list is your
private READ-ONLY copy of the actual list, and you will not notice
if anything is changed, i.e. BBS’es added or deleted.

Each node in the list has bl_Node.ln_Name set to bl_Data->bd_Name.
You are free to use bl_Node.ln_Name for your own purposes.

The list must be deallocated with
FreeBRObject()
.

You are allowed to rearrange the order of the nodes in the list.

All nodes must be in the list when the list is deallocated.

INPUTS

BBSRead.adoc 32 / 78

RESULT
bbslist - Exec list of the available BBS’es. The list consist of

BBSListNode structures. Returns a NULL pointer on failure.

EXAMPLE

NOTES

BUGS

SEE ALSO
<bbsread.h>

1.26 bbsread.library/GetConfigValue()

NAME
GetConfigValue -- Returns the configuration value to use.

SYNOPSIS
error = GetConfigValue(tagitems)
D0 A0

BOOL GetConfigValue(struct TagItem *);

error = GetConfigValueTags(Tag1, ...)

BOOL GetConfigValueTags(ULONG, ...);

FUNCTION
Get the correct value for a specified conference of BBS.

INPUTS
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
GetConfigValue().

GCV_GlobalConfig - GlobalConfig is pointed by
(struct GlobalConfig *) ti_Data. Default value is NULL.

GCV_TypeListItem - TypeListItem is pointed by (struct
TypeListItem *) ti_Data. Default value is NULL.

GCV_BBSListItem - BBSListItem is pointed by (struct
BBSListItem *) ti_Data. Default value is NULL.

GCV_ConfListItem - ConfListItem is pointed by (struct
ConfListItem *) ti_Data. Default value is NULL.

GCV_EventType - Type of event to use config value in is in (ULONG)
ti_Data. This value is used by GCV_ConfReplyString and
GCV_BBSReplyString tags. Default value of this tag is
EVE_REPLYMSG.

BBSRead.adoc 33 / 78

GCV_ConfQuoteType - Where to put conference quote type is
pointed by (UBYTE *) ti_Data.

GCV_ConfQuoteChars - Where to put pointer to conference quote chars
is pointed by (STRPTR *) ti_Data.

GCV_ConfQuoteReflow - Where to put conference reflow flag is
pointed by (BOOL *) ti_Data.

GCV_BBSQuoteType - Where to put bbs quote type is pointed by
(UBYTE *) ti_Data.

GCV_BBSQuoteChars - Where to put pointer to bbs quote chars is
pointed by (STRPTR *) ti_Data.

GCV_BBSQuoteReflow - Where to put bbs reflow flag is pointed by
(BOOL *) ti_Data.

GCV_ConfReplyString - Where to put pointer to conference reply
string is pointed by (STRPTR *) ti_Data.

GCV_BBSReplyString - Where to put pointer to bbs reply string is
pointed by (STRPTR *) ti_Data.

GCV_ConfEnterScript - Where to put pointer to name of conference
enter script is pointed by (STRPTR *) ti_Data.

GCV_ConfLeaveScript - Where to put pointer to name of conference
leave script is pointed by (STRPTR *) ti_Data.

GCV_BBSEnterScript - Where to put pointer to name of bbs enter script
is pointed by (STRPTR *) ti_Data.

GCV_BBSLeaveScript - Where to put pointer to name of bbs leave script
is pointed by (STRPTR *) ti_Data.

RESULT
error - Boolean

EXAMPLE

NOTES
The string pointers returned are only valid until GlobalConfig,
TypeData, BBSData or ConfData are updated or freed.

BUGS

SEE ALSO

1.27 bbsread.library/GetConfList()

NAME
GetConfList -- Returns a list of available conferences in a BBS.

SYNOPSIS

BBSRead.adoc 34 / 78

conflist = GetConfList(bbs)
A0

struct List * GetConfList(struct BBSListItem *);

FUNCTION
Returns an Exec list of the available conferences on a specified BBS.
This list is your private READ-ONLY copy of the actual list, and you
will not notice if anything is changed, i.e. conferences added or
deleted.

Each node in the list has cl_Node.ln_Name set to cd_Name. You are
free to use cl_Node.ln_Name for your own purposes. cl_UserData is
set to NULL.

The list must be deallocated with
FreeBRObject()
.

You are allowed to rearrange the order of the nodes in the list.

All nodes must be in the list when the list is deallocated.

INPUTS
bbs - Pointer to the BBSListItem to get conference list for.

RESULT
conflist - Exec list of the available conferences at the BBS. The

list consists of ConfListItem structures. Returns a NULL pointer
on failure.

EXAMPLE

NOTES
Will update the bi_SumMarked and bi_SumM2User fields of
bbs->bl_Internal.

BUGS

SEE ALSO

1.28 bbsread.library/GetFAreaList()

NAME
GetFAreaList -- Returns a list of available file areas on a BBS.

SYNOPSIS
farealist = GetFAreaList(bbs)

A0

struct List * GetFAreaList(struct BBSListItem *);

FUNCTION
Returns a Exec list of the available file areas on a specified BBS.

BBSRead.adoc 35 / 78

This list is your private READ-ONLY copy of the actual list, and
you will not notice if anything is changed, i.e. conferences added
or deleted.

Each node in the list has al_Node.ln_Name set to ad_Name. You are
free to use al_Node.ln_Name for your own purposes.

The list must be deallocated with
FreeBRObject()
.

INPUTS
bbs - Pointer to the BBSListItem to get file area list for.

RESULT
farealist - Exec list of the available file areas at the BBS. The list

consist of FAreaListItem structures. Returns a NULL pointer on
failure.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.29 bbsread.library/GetGlobalConfig()

NAME
GetGlobalConfig -- Returns a copy of the global configuration.

SYNOPSIS
globalcfg = GetGlobalConfig()
D0

struct GlobalConfig *GetGlobalConfig();

FUNCTION
Returns a copy of the global configuration. The structure is your
private READ-ONLY copy of the actual structure. Beware that some
STRPTR’ers in the returned structure could be NULL-pointers.

The structure must be deallocated with
FreeBRObject()
.

INPUTS

RESULT
globalcfg - Structure with global configuration. Returns a NULL

pointer on failure.

BBSRead.adoc 36 / 78

EXAMPLE

NOTES
Some of the STRPTR in the structure may be NULL-pointers.

BUGS

SEE ALSO

ConfigGlobal()

1.30 bbsread.library/GetMarkedMsg()

NAME
GetMarkedMsg -- Get messagenumbers of marked messages

SYNOPSIS
msgnrbuf = GetMarkedMsg(conf, usebuf, offset, numof)
D0 A0 A1 D1 D2

ULONG * GetMarkedMsg(struct ConfListItem *, ULONG *, ULONG, ULONG);

FUNCTION
Returns the mesagenumbers of the marked (unread) messages. If there is
not enough messages to fill the supplied buffer, the rest of the
entries will be NULL’ed out.

INPUTS
conf - Pointer to conference to get marked messages in.
usebuf - Pointer to the buffer to hold the messagenumbers in, must

atleast of (numof * sizeof(ULONG)) length.
offset - Where in the list over marked messages to start reading.
numof - Number of messagenumbers to get.

RESULT
msgnrbuf - Pointer to the buffer containing the messagenumers.

On failure, a NULL pointer is returned.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.31 bbsread.library/GetSignature()

NAME
GetSignature -- Return the prefered signature.

BBSRead.adoc 37 / 78

SYNOPSIS
signature = GetSignature(globals, bbs, conf)
D0 A0 A1 A2

STRPTR GetSignature(struct GlobalConfig *, struct BBSListItem *,
struct ConfListItem *);

FUNCTION
Returns the signature to use in a message in the conf conference in
the bbs BBS. The pointer returned is only valid until the next time
you call this function. If the prefered signature is a file signature,
the signature will be loaded and the returned pointer will point to
a buffer holding the signature.

INPUTS
globals - Pointer to your copy of the global configuration.
bbs - Pointer to BBSListItem for bbs to get signature for. Can be a

NULL-pointer.
conf - Pointer to ConfListItem for the conference to get signature

for. Can be a NULL-pointer.

RESULT
signature - Returns a string pointer for the signature to use. Returns

a NULL-pointer if there is no defined signature or if the function
failed. On failure, IoErr() will be non-zero. Will also return a
NULL pointer if a NO_SIGNATURE flag is set.

EXAMPLE

NOTES
The pointer returned may be a copy of the Signature string pointer in
either GlobalConfig, BBSData or ConfData. Therefore the pointer is
only valid as long as you don’t free or update any of these
structures.

BUGS

SEE ALSO

1.32 bbsread.library/GetTagFile()

NAME
GetTagFile -- Return the prefered tag file.

SYNOPSIS
tagfile = GetTagFile(globals, bbs, conf)
D0 A0 A1 A2

STRPTR GetTagFile(struct GlobalConfig *, struct BBSListItem *,
struct ConfListItem *);

FUNCTION
Returns the tag file to use in a message in the conf conference in
the bbs BBS.

BBSRead.adoc 38 / 78

INPUTS
globals - Pointer to your copy of the global configuration.
bbs - Pointer to BBSListItem for bbs to get tag file for. Can be a

NULL-pointer.
conf - Pointer to ConfListItem for the conference to get tag file

for. Can be a NULL-pointer.

RESULT
tagfile - Returns a string pointer for the tag file to use. Returns a

NULL-pointer if there is no defined tag file. Will also return a
NULL pointer if a NO_TAG flag is set.

EXAMPLE

NOTES
The pointer returned is a copy of the tag file string pointer in
either GlobalConfig, BBSData or ConfData. Therefore the pointer is
only valid as long as you don’t free or update any of these
structures.

BUGS

SEE ALSO

1.33 bbsread.library/GetTypeList()

NAME
GetTypeList -- Returns a list of available BBS types

SYNOPSIS
typelist = GetTypeList()
D0

struct List * GetTypeList(void);

FUNCTION
Returns an Exec list with the available BBS types. This list is your
private READ-ONLY copy of the actual list, and you will not notice
if anything is changed, i.e. BBS types added or deleted.

Each node in the list has tl_Node.ln_Name set to tl_Data->td_TypeName.
You are free to use tl_Node.ln_Name for your own purposes.

The list must be deallocated with
FreeBRObject()
.

INPUTS

RESULT
typelist - Exec list of the available BBS types. The list consist of

TypeListNode structures. Returns a NULL pointer on failure.

EXAMPLE

BBSRead.adoc 39 / 78

NOTES

BUGS

SEE ALSO
<bbsread.h>

1.34 bbsread.library/MakeEventPackage()

NAME
MakeEventPackage -- Make event package for a bbs

SYNOPSIS
error = MakeEventPackage(bbs, tagitems)
D0 A0 A1

LONG MakeEventPackage(struct BBSListItem *, struct TagItem *);

error = MakeEventPackageTags(bbs, Tag1, ...)

LONG MakeEventPackageTags(struct BBSListItem *, ULONG, ...);

FUNCTION
This function calls up the command to pack and archive the events for
this BBS. The command used is the one set up in the typedata for the
BBS. This function returns success if no eventpacker is configured
for the bbstype of this bbs.

The tags that are not understood are forwarded to dos.library/
SystemTagList(). Look at dos.library/SystemTagList() for futher
information on tags.

The BDF_EVENTS_CHANGED flag will be cleared for this bbs if this
function returns success.

INPUTS
bbs - Pointer to BBSListItem for bbs.
tagitems - Pointer to TagItem array. Tags not defined for

MakeEventPackage() are passed to dos.library/SystemTagList(). See
<dos/dostags.h>. Both dos.library/SystemTagList() tags and
dos.library/CreateNewProc() tags may be passed.

Here are the TagItem.ti_Tag values that are defined for
MakeEventPackage().

EP_PublicScreen - Public screen for eventpacker to open possible
progress windows on is in (STRPTR) ti_Data. The public screen name
is forwarded to the packer as a parameter.

RESULT
error - 0 for success, result from command, or -1. Note that on

error, the caller is responsible for any filehandles or other
things passed in via tags.

BBSRead.adoc 40 / 78

EXAMPLE

NOTES
bbs->bl_Data->bd_Flags will be updated by MakeEventPackage().

BUGS

SEE ALSO
dos.library/SystemTagList(), dos.library/CreateNewProc(),
<dos/dostags.h>

1.35 bbsread.library/MarkMessage()

NAME
MarkMessage -- Mark or unmark messages

SYNOPSIS
error = MarkMessage(conf, tagitems)
D0 A0 A1

BOOL MarkMessage(struct ConfListItem *, struct TagItem *);

error = MarkMessageTags(conf, Tag1, ...)

BOOL MarkMessageTags(struct ConfListItem *, ULONG, ...);

FUNCTION
Use this function to mark or unmark messages.

INPUTS
conf - Pointer to conference to mark or unmark messages in.
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
MarkMessage().

MM_MarkMessage - The messagenumber to mark is in (ULONG) ti_Data.

MM_MarkArray - An array of ULONG containing messages to mark is
pointed to by (ULONG *) ti_Data. A NULL pointer terminates the
array.

MM_UnMarkMessage - The messagenumber to unmark is in (ULONG) ti_Data.

MM_UnMarkArray - An array of ULONG containing messages to unmark is
pointed to by (ULONG *) ti_Data. A NULL pointer terminates the
array.

MM_SuperMarking - The mark tags will set the MDF_SUPERMARKED flag and
the unmark tags will clear the MDF_SUPERMARKED flag if (BOOL)
ti_Data is TRUE.

MM_Reset - Unmark all marked messages if (BOOL) ti_Data is TRUE.

MM_MineFirst - Move marked messages to user first if (BOOL)

BBSRead.adoc 41 / 78

ti_Data is TRUE.

MM_Reference - Move marked messages in reference order if (BOOL)
ti_Data is TRUE.

MM_ToAllFirst - Move marked messages to all first if (BOOL) ti_Data
is TRUE.

MM_SortByMsgNumbers - Sort the marked messages by its messagenumbers
if (BOOL) ti_Data is TRUE.

MM_GroupSubject - Group marked messages by subject if (BOOL) ti_Data
is TRUE.

MM_Reverse - Reverse the order of the marked messages if (BOOL)
ti_Data is TRUE.

MM_SortAlphabetical - Sort alphabetically on subject or author
(depending on what other tag is given in) if (BOOL) ti_Data
is TRUE.

MM_SortByAuthor - Sort by author names if (BOOL) ti_Data is TRUE.

RESULT
error - Returns TRUE on failure.

EXAMPLE

NOTES
Super marked messages can only be unmarked when the MM_SuperMarking
tag is set to TRUE.

BUGS

SEE ALSO

1.36 bbsread.library/PackDataFile()

NAME
PackDataFile -- Removes all deleted entrys from a datafile

SYNOPSIS
fail = PackDataFile(tagitems)
D0 A0

struct TagItem * PackDataFile(struct TagItem *);

fail = PackDataFileTags(Tag1, ...)

struct TagItem * PackDataFileTags(ULONG, ...);

FUNCTION
A function for ’packing’ datafiles. This means removing all deleted
information from the datafile. This function supports callback
progress hooks.

BBSRead.adoc 42 / 78

INPUTS
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
PackDataFile().

PD_EventData - Clean up event data base for a bbs. The bbs to clean
up is pointed by (struct BBSListItem *) ti_Data. No progress
callback for PD_EventData.

PD_Conference - Pack the datafiles of the conference given in
(struct ConfListItem *) ti_Data. Messages will be deleted
acording to ConfData.cd_KeepMsg and ConfData.cd_KeepTime.
A conference is packed in two passes. First pass deletes
messages, and the second pass actually packs the message data
files. BRProgress.brp_Actions is only used for the first pass.

PD_AttachmentList - This is a (struct List **) list consisting of
(struct AttachmentItem *) nodes that will contain the file
attachments included on messages that are purged when
PD_Conference is used. Free it using

FreeBRObject()
when

you are done with it. This list will be valid but empty
if no attachments are found (but still needs to be freed).

PD_UserData - Pack the datafiles for the user database on the bbs
pointed by (struct BBSListItem *) ti_Data.

PD_KillData - Pack the datafiles for the kill database on the bbs
pointed by (struct BBSListItem *) ti_Data.

PD_FileData - Pack the datafiles for the file database on the bbs
pointed by (struct BBSListItem *) ti_Data.

PD_SavePackedBRIEF - Name of file to save packed messages in BRIEF
format is pointed by (STRPTR) ti_Data. All messages which are
deleted because of KeepTime and KeepMsg will be saved to this
file. If the file exists, the messages will be appended to the
file. Default is not to save any messages. This tag is ignored
if the PD_Conference tag is not given.

RESULT
fail - NULL on success. On failure, it points to the tag which caused

the failure.

EXAMPLE

NOTES

BUGS

SEE ALSO

BBSRead.adoc 43 / 78

1.37 bbsread.library/ParseGrab()

NAME
ParseGrab -- Parse a grab and add it’s messages.

SYNOPSIS
error = ParseGrab(grabnode, tagitems)
D0 A0 A1

LONG ParseGrab(struct Node *, struct TagItem *);

error = ParseGrabTags(grabnode, Tag1, ...)

LONG ParseGrabTags(struct Node *, ULONG, ...);

FUNCTION
This calls up the command for adding messages in a grab to the message
database. The grabnode parameter *must* be a node from a list returned
by

ScanForGrabs()
. The command used is the one set up in the typedata

for the BBS.

The tags that are not understood are forwarded to dos.library/
SystemTagList(). Look at dos.library/SystemTagList() for futher
information on tags.

INPUTS
grabnode - Pointer to Node structure.
tagitems - Pointer to TagItem array. See <dos/dostags.h>. Both

dos.library/SystemTagList() tags and dos.library/CreateNewProc()
tags may be passed.

Here are the TagItem.ti_Tag values that are defined for
ParseGrab().

PG_PublicScreen - Public screen for eventpacker to open possible
progress windows on is in (STRPTR) ti_Data. The public screen name
is forwarded to the parser as a parameter. This screen name will
also be used if ParseGrab() opens any reqtools requesters.

PG_RequestWindow - Reference window for requesters opened by the
ParseGrab() function is pointed by (struct Window *) ti_Data. If
this tag is omitted or is NULL and reqtools is not available will
requesters appear on the default public screen.

RESULT
error - 0 for success, result from command, or -1. Note that on

error, the caller is responsible for any filehandles or other
things passed in via tags.

EXAMPLE

NOTES
This funtion uses reqtools requesters if reqtools.library is
available. The reqtools requesters opens on PG_PublicScreen if this

BBSRead.adoc 44 / 78

tag is given.

BUGS

SEE ALSO
dos.library/SystemTagList(), dos.library/CreateNewProc(),
<dos/dostags.h>,

ScanForGrabs()

1.38 bbsread.library/PGPBREvents()

NAME
PGPBREvents -- PGP sign and/or encrypt events.

SYNOPSIS
error = PGPBREvents(bbs, tagitems)
D0 A0 A1

ULONG PGPBREvents(struct BBSListItem *, struct TagItem *);

error = PGPBREventsTags(bbs, Tag1, ...)

ULONG PGPBREventsTags(struct BBSListItem *, ULONG, ...);

FUNCTION
This function will PGP sign and/or encrypt BREV_MsgFile files if the
BREV_PGPSignID and/or BREV_PGPEncryptID tag is used in an event. The
encrypted and/or signed message (with ascii armour) is stored on the
disk under the same main name as the orginal text file, but with an
added .asc extension.

This function is meant to be used by event packers before packing any
events.

Will not PGP sign and/or encrypt if the file containg the
encrypted/signed message is older than the BREV_MsgFile or the event
hasn’t been changed since the encryption/signing.

INPUTS
bbs - BBS to sign and/or encrypt events on.
tagitems - Pointer to TagItem array. Tags not defined for

PGPBREvents() are passed to dos.library/SystemTagList().See
<dos/dostags.h>. Both dos.library/SystemTagList() tags and
dos.library/CreateNewProc() tags may be passed.

Here are the TagItem.ti_Tag values that are defined for
PGPBREvents().

PGP_PublicScreen - Public screen name for pass phrase requester
(needed when signing messages) is pointed (STRPTR) ti_Data.
Default is default public screen.

RESULT
error - 0 on success. On failure will the number of the event which

BBSRead.adoc 45 / 78

failed be returned.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.39 bbsread.library/ReadBREvent()

NAME
ReadBREvent -- Read a event from the database.

SYNOPSIS
eveobj = ReadBREvent(bbs, eventnr, tagitems)
D0 A0 D1 A1

APTR ReadBREvent(struct BBSListItem *, ULONG, struct Tagitem *);

eveobj = ReadBREventTags(bbs, eventnr, Tag1, ...)

APTR ReadBREventTags(struct BBSListItem *, ULONG, ULONG, ...);

FUNCTION
Reads the data about an event from the database.

INPUTS
bbs - Pointer to BBSListItem structure returned in

GetBBSList()
.

eventnr - Number of the event to get data for.
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
ReadBREvent().

RBREV_EventTagsPtr - Where to put a pointer to the loaded event
tagarray is pointed by (struct TagItem **) ti_Data. This tagarray
contains all the BREV_#? tags for this event. These are the same
as supplied with

WriteBREvent()
when this event was added to the

database. If the event is marked as deleted or if ReadBREvent()
fails, *(struct TagItem **) ti_Data) will be set to NULL.

RBREV_EventType - Where to put the type of this event is pointed by
(ULONG *) ti_Data.

RBREV_EventDate - Where to put the date when the event was added to
the database is pointed by (ULONG *) ti_Data. The date is in
seconds from 01-Jan-1978.

RBREV_Flags - Where to put the flags for this event is pointed by

BBSRead.adoc 46 / 78

(LONGBITS *) ti_Data. See <libraries/bbsread.h> for definitions.

RESULT
eveobj - Returns NULL on failure. On success, eveobj *must* be passed

to
FreeBRObject()
if it is anything else than (APTR) -1.

EXAMPLE

NOTES
No need to

FreeBRObject()
eveobj if eveobj is (APTR) -1.

You are allowed to change the returned strings. (They must not be made
any longer)

BUGS

SEE ALSO

1.40 bbsread.library/ReadBRFile()

NAME
ReadBRFile -- Read the data for a file from the database.

SYNOPSIS
fileobj = ReadBRFile(farea, filenr, tagitems)
D0 A0 D1 A1

APTR ReadBRFile(struct FAreaListItem *, ULONG, struct Tagitem *);

fileobj = ReadBRFileTags(farea, filenr, Tag1, ...)

APTR ReadBRFileTags(struct FAreaListItem *, ULONG, ULONG, ...);

FUNCTION
Reads the data for a file from the database.

INPUTS
farea - Pointer to FAreaListItem structure returned in

GetFAreaList()
.

filenr - Number of file to get data for.
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
ReadBRFile().

RBRF_FileTagsPtr - Where to put a pointer to the loaded file tagarray
is pointed by (struct TagItem **) ti_Data. This tagarray contains
all the BRFILE_#? tags for this file. These are the same as
supplied with

BBSRead.adoc 47 / 78

WriteBRFile()
when this file was written to the

database. If the file is marked as deleted or if ReadBRFile()
fails, *(struct TagItem **) ti_Data) will be set to NULL.

RBRF_FileDate - Where to put the date when the file was added to the
database is pointed by (ULONG *) ti_Data. The date is in seconds
from 01-Jan-1978.

RBRF_Flags - Where to put the flags for this file is pointed by
(LONGBITS *) ti_Data. See <libraries/bbsread.h> for definitions.

RBRF_NextFile - Where to put the number of the next file in the same
file area as this file is pointed by (ULONG *) ti_Data. This tag

must be used when traversing trough all files in a file area.
The number of the first file in a file area is in the file areas
FAreaData structure. A 0 means there are no more files in this
file area.

RESULT
userobj - Returns NULL on failure. On success, fileobj *must* be passed

to
FreeBRObject()
if it is anything else than (APTR) -1.

EXAMPLE

NOTES
No need to

FreeBRObject()
fileobj if fileobj is (APTR) -1.

You are allowed to change the returned strings. (They must not be made
any longer)

BUGS

SEE ALSO

1.41 bbsread.library/ReadBRKill()

NAME
ReadBRKill -- Read the data for a kill from the database.

SYNOPSIS
killobj = ReadBRKill(bbs, killnr, tagitems)
D0 A0 D1 A1

ULONG ReadBRKill(struct BBSListItem *, ULONG, struct Tagitem *);

killobj = ReadBRKillTags(bbs, killnr, Tag1, ...)

ULONG ReadBRKill(struct BBSListItem *, ULONG, ULONG, ...);

BBSRead.adoc 48 / 78

FUNCTION
Read the data for a kill from the database.

INPUTS
bbs - Pointer to BBSListItem structure returned in

GetBBSList()
.

killnr - Number of kill to get data for.
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
ReadBRKill().

RBRK_KillTagsPtr - Where to put a pointer to the loaded kill tagarray
is pointed by (struct TagItem **) ti_Data. This tagarray contains
all the BRMSG_#? tags for this kill. These are the same as
supplied with

WriteBRKill()
when this kill was written to the

database. If the kill is marked as deleted or if ReadBRKill()
fails, *((struct TagItem **) ti_Data) will be set to NULL.

RBRK_KillDate - Where to put the date when the kill was added to the
database is pointed by (ULONG *) ti_Data. The date is in seconds
from 01-Jan-1978.

RBRK_LastKill - Where to put the date when this kill last killed is
pointed by (ULONG *) ti_Data. The date is in seconds from
01-Jan-1978.

RBRK_Flags - Where to put the flags for this kill is pointed by
(LONGBITS *) ti_Data. See <libraries/bbsread.h> for definitions.

RESULT
killobj - Returns NULL on failure. On success, killobj *must* be passed

to
FreeBRObject()
if it is anything else than (APTR) -1.

EXAMPLE

NOTES
No need to

FreeBRObject()
userobj if userobj is (APTR) -1.

You are allowed to change the returned strings. (They must not be made
any longer)

BUGS

SEE ALSO

BBSRead.adoc 49 / 78

1.42 bbsread.library/ReadBRMessage()

NAME
ReadBRMessage -- Read a message from the database.

SYNOPSIS
msgobj = ReadBRMessage(conf, msgnr, tagitems)
D0 A0 D1 A1

APTR ReadBRMessage(struct ConfListItem *, ULONG, struct TagItem *);

msgobj = ReadBRMessageTags(conf, msgnr, Tag1, ...)
D0 A0 D1 A1

APTR ReadBRMessageTags(struct ConfListItem *, ULONG, ULONG, ...);

FUNCTION
Read data about a message from the database.

The multiple parts in multipart messages should be presented in the
order they are found in the taglist. BRMSG_Text should always be
presented first.

INPUTS
conf - Pointer to ConfListItem structure returned in

GetConfList
.

msgnr - Number of the message to get data for.

tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
ReadBRMessage().

RBRMSG_MsgTagsPtr - Where to put a pointer to the loaded message
tagarray is pointed by (struct TagItem **) ti_Data. This tagarray
contains all the BRMSG_#? tags for this message. These are the
same as supplied with

WriteBRMessage()
when this message was added

to the database. If the message is marked as deleted or if
ReadBRMessage() fails, *(struct TagItem **) ti_Data) will be set to
NULL.

RBRMSG_MsgDate - Where to put the date when the message was added to
the database is pointed by (ULONG *) ti_Data. The date is in
seconds from 01-Jan-1978.

RBRMSG_Reference - Where to put the number of the message this message
refers to is pointed by (ULONG *) ti_Data. If the reference is 0,
this message has no references.

RBRMSG_FirstRef - Where to put the number of the first message which
refers to this message is pointed by (ULONG *) ti_Data.

RBRMSG_LastRef - Where to put the number of the last message which

BBSRead.adoc 50 / 78

refers to this message is pointed by (ULONG *) ti_Data.

RBRMSG_PrevRef - Where to put the number of the previous message which
refers to the same message as this message is pointed by (ULONG *)
ti_Data.

RBRMSG_NextRef - Where to put the number of the next message which
refers to the same message as this message is pointed by (ULONG *)
ti_Data.

RBRMSG_Flags - Where to put the flags for this message is pointed by
(LONGBITS *) ti_Data. See <libraries/bbsread.h> for definitions.

RBRMSG_GetHeader - Tags considered as header fields are returned
in the message tagarray if (BOOL) ti_Data is TRUE. Default is
TRUE. To be used in combination with RBRMSG_MsgTagsPtr. What tags
which are considered as header fields are defined in
<libraries/bbsread.h>

RBRMSG_GetText - Tags considered as text fields are returned in the
message tagarray if (BOOL) ti_Data is TRUE. Default is TRUE. To be
used in combination with RBRMSG_MsgTagsPtr. What tags which are
considered as text fields are defined in <libraries/bbsread.h>

RESULT
msgobj - Returns NULL on failure. On success, msgobj *must* be passed

to
FreeBRObject()
if it is anything else than (APTR) -1.

EXAMPLE

NOTES
No need to

FreeBRObject()
msgobj if msgobj is (APTR) -1.

You are allowed to change the returned strings. (They must not be made
any longer)

BUGS

SEE ALSO

1.43 bbsread.library/ReadBRUser()

NAME
ReadBRUser -- Read the data for an user from the database.

SYNOPSIS
userobj = ReadBRUser(bbs, usernr, tagitems)
D0 A0 D1 A1

APTR ReadBRUser(struct BBSListItem *, ULONG, struct Tagitem *);

BBSRead.adoc 51 / 78

userobj = ReadBRUserTags(bbs, usernr, Tag1, ...)

APTR ReadBRUserTags(struct BBSListItem *, ULONG, ULONG, ...);

FUNCTION
Reads the data for an user from the database.

INPUTS
bbs - Pointer to BBSListItem structure returned in

GetBBSList()
.

eventnr - Number of user to get data for.
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
ReadBRUser().

RBRUSR_UserTagsPtr - Where to put a pointer to the loaded user
tagarray is pointed by (struct TagItem **) ti_Data. This tagarray
contains all the BRUSR_#? tags for this user. These are the same
as supplied with

WriteBRUser()
when this user was written to the

database. If the user is marked as deleted or if ReadBRUser()
fails, *(struct TagItem **) ti_Data) will be set to NULL.

RBRUSR_UserDate - Where to put the date when the user was added to the
database is pointed by (ULONG *) ti_Data. The date is in seconds
from 01-Jan-1978.

RBRUSR_Flags - Where to put the flags for this user is pointed by
(LONGBITS *) ti_Data. See <libraries/bbsread.h> for definitions.

RESULT
userobj - Returns NULL on failure. On success, userobj *must* be passed

to
FreeBRObject()
if it is anything else than (APTR) -1.

EXAMPLE

NOTES
No need to

FreeBRObject()
userobj if userobj is (APTR) -1.

You are allowed to change the returned strings. (They must not be
made any longer)

BUGS

SEE ALSO

BBSRead.adoc 52 / 78

1.44 bbsread.library/ReadPassiveConfList()

NAME
ReadPassiveConfList -- Read the passive conference list.

SYNOPSIS
passConfList = ReadPassiveConfList(bbs)
D0 A0

struct List * ReadPassiveConfList(struct BBSListItem *);

FUNCTION
Gives you a list of all conferences in the passive conference list
datafiles. The passive conference list is a list of *all* available
conferences at the bbs. It should be used when the user want to send
a join event. Returns a list of struct PassConfListItem. The
pl_Node.ln_Name pointer equals the pl_Name pointer.

INPUTS
bbs - Pointer to the bbs which the list should be read from.

RESULT
passConfList - Pointer to the list header of the passive conference

list. The list *must* be freed with a call to
FreeBRObject()
.

Returns NULL on failure or if no passive conference list is
available. IoErr() will be set on failure.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.45 bbsread.library/ScanForGrabs()

NAME
ScanForGrabs -- Scans download directory for grabs.

SYNOPSIS
grablist = ScanForGrabs(void)
D0

struct MinList * ScanForGrabs(void);

FUNCTION
Scans the download directory for grabs. The BBS’es with waiting grabs
is returned in a list of struct Node. Node.ln_Name points to the name
of the BBS.

BBSRead.adoc 53 / 78

If there are more than one grab from a BBS, there will be a node in
the list for each grabfile. The nodes in the list are sorted on the
name of the grabfile. By this the grabs are sorted correct if they
are numbered. The grabs should be parsed in the order they are found
in the list.

The list must be deallocated with
FreeBRObject()
.

INPUTS

RESULT
grablist - Pointer to MinList structure. List contains Node

structures. Returns an empty list if there are no new grabs.
Returns NULL-pointer on failure and sets IoErr() if possible.

EXAMPLE

NOTES
Returns NULL-pointer if gc_DnloadPath isn’t set with GlobalConfig().

BUGS

SEE ALSO

1.46 bbsread.library/SearchBRFile()

NAME
SearchBRFile -- Search file database.

SYNOPSIS
found = SearchBRFile(tagitems)
D0 A0

struct SFileResult * SearchBRFile(struct TagItem *);

found = SearchBRFileTags(Tag1, ...)

struct SFileResult * SearchBRFileTags(ULONG, ...);

FUNCTION
This function scans the filedatabase for a file matching the given
searchkey. It’s possible to search a file area or all file areas on a
bbs.

Supports callback progress hooks tags.

INPUTS
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
SearchBRFile().

BBSRead.adoc 54 / 78

SBRF_SearchFAreaList - List of file areas to search in is pointed by
(struct List *) ti_Data. The list *MUST* have been obtained with

GetFAreaList()
. The point of this tag is to be able to search

all file areas on a bbs in one call.

SBRF_SearchFArea - Search the file area pointed by (struct
FAreaListItem *) ti_Data. This tag has higher priority than the
SBRF_SearchFAreaList tag.

SBRF_SearchStr - String to search for is pointed by (STRPTR) ti_Data.
Wildcards are allowed.

SBRF_SearchName - Search for a file with a name matching
SBRF_SearchStr exact if (BOOL) ti_Data is TRUE. Default is FALSE.

SBRF_SearchAll - Search all strings for a match with SBRF_SearchStr
if (BOOL) ti_Data is TRUE. Default is FALSE. This tag has higher
priority than the SBRF_SearchName tag.

SBRF_NewerThan - Find files newer than (ULONG) ti_Data. Time is in
seconds since 1.January 1978

RESULT
found - Pointer to a SFileResult structure containing the results of

the search. The SFileResult structure must be deallocated with

FreeBRObject()
. Returns a NULL pointer if no matches where found

or if the function failed. IoErr() will be non null on failure.

EXAMPLE

NOTES
This function will fail if neither SBRF_SearchBBS nor SBRF_SearchFArea
is given in the taglist.

If found->fr_NextResult is non NULL, a linked list of SFileResult
structures is returned.

BUGS

SEE ALSO

1.47 bbsread.library/SearchBRMessage()

NAME
SearchBRMessage -- Search for messages in a conference.

SYNOPSIS
found = SearchBRMessage(conf, tagitems)
D0 A0 A1

BBSRead.adoc 55 / 78

struct SearchResult * SearchBRMessage(struct ConfListItem *,
struct TagItem *);

found = SearchBRMessageTags(conf, tag1, ...)

struct SearchResult * SearchBRMessageTags(struct ConfListItem *,
ULONG, ...);

FUNCTION
Search through the messages in a conference. The search is not case
sensitive.

Standard AmigaDOS wildcards are supported.

Supports callback progress hooks tags.

INPUTS
conf - Conference to search in.
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
SearchBRMessage().

SC_FindString - String to search for is in (STRPTR) ti_Data. There
can be searched for more than one string on each call by using
this tag more than once. As of V3, this tag is no longer needed
when searching.

SC_FromUser - Search for messages from the user in (STRPTR) ti_data.

SC_ToUser - Search for messages to the user in (STRPTR) ti_data.
Overrides the SC_ToAll tag.

SC_FromMessage - Message number to start searching at is in (ULONG)
ti_Data. Default is to start at the first message in the
conference.

SC_ToMessage - Message number to end searching at is in (ULONG)
ti_Data. Default is to end at the last message in the conference.

SC_SearchSubject - Search in the subject if (BOOL) ti_Data is TRUE.
Default value for this tag is TRUE.

SC_SearchMessage - Search in the message if (BOOL) ti_Data is TRUE.
Default value for this tag is TRUE.

SC_SearchComment - Search in the comment if (BOOL) ti_Data is TRUE.
Default value for this tag is TRUE.

SC_MessageArray - Message numbers to search is in a NULL-terminated
array of ULONG pointed by (ULONG *) ti_Data. This tag overrides
the SC_FromMessage and SC_ToMessage tags.

SC_ToAll - Search for messages to ALL if (BOOL) ti_Data is TRUE.

SC_KeptMessages - Search for messages with the MDF_KEEP flag set if
(BOOL) ti_Data is TRUE.

BBSRead.adoc 56 / 78

SC_NewerThan - Search for messages newer than (ULONG) ti_Data. The
time is in seconds since 1.January 1978.

SC_OlderThan - Search for messages older than (ULONG) ti_Data. The
time is in seconds since 1.January 1978.

RESULT
found - Pointer to a SearchResult structure containing the results of

the search. The SearchResult structure must be deallocated with

FreeBRObject()
. Returns a NULL pointer if no matches where found

or the function failed. IoErr() will be non null on failure.

EXAMPLE

NOTES
If found->sr_NextResult is non NULL, a linked list of SearchResult
structures is returned.

The found->sr_Messages[] array is garantied to be NULL terminated.

BUGS

SEE ALSO

1.48 bbsread.library/SearchBRUser()

NAME
SearchBRUser -- Search user database.

SYNOPSIS
found = SearchBRUser(bbs, tagitems)
D0 A0 A1

struct SUserResult * SearchBRUser(struct BBSListItem *,
struct TagItem *);

found = SearchBRUserTags(bbs, Tag1, ...)

struct SUserResult * SearchBRUserTags(struct BBSListItem *, ULONG,
...);

FUNCTION
This function scans the userdatabase for an user at the given BBS.
When suggesting users, SoundEx hashing will be used to suggest user
names which match the search string. If there are more than one name
in the search string, the first and the last will be used to narrow
the suggestions. The search order is aliases, names, addresses and
comment.

Standard AmigaDOS wildcards is supported.

BBSRead.adoc 57 / 78

INPUTS
bbs - Pointer to BBS to search in.
namestr - Name to search for.
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
SearchBRUser().

SBRU_SearchStr - String to search for is pointed by (STRPTR) ti_Data.

SBRU_SearchName - Search for a name matching SBRU_SearchStr exact if
(BOOL) ti_Data is TRUE. Default is TRUE.

SBRU_SearchAddr - Search for a address matching SBRU_SearchStr exact
if (BOOL) ti_Data is TRUE. Default is TRUE.

SBRU_SearchAlias - Search for a alias matching SBRU_SearchStr exact
if (BOOL) ti_Data is TRUE. Default is TRUE.

SBRU_SearchComment - Search in comment for a match to SBRU_SearchStr
if (BOOL) ti_Data is TRUE. Default is FALSE. When wildcards are
used, the search pattern must match a line in the comment.

SBRU_SuggestUsers - A list of suggestions for user names if
SBRU_SearchStr doesn’t match any user names in the database will
be pointed by *((struct MinList **) ti_Data) when this function
returns. The list will consist of UserSuggestion structures. The
list pointer may be a NULL-pointer if no users where found or if
there was a failure. NB: The list *must* be freed with

FreeBRObject()
. This tag is ignored when the SBRU_SearchName tag

is FALSE or if SBRU_SearchStr contains wildcards.

RESULT
found - Pointer to a SUserResult structure containing the results of

the search. The SUserResult structure must be deallocated with

FreeBRObject()
. Returns a NULL pointer if no matches where found

or if the function failed. IoErr() will be non null on failure.

EXAMPLE

NOTES
If found->ur_NextResult is non NULL, a linked list of SUserResult
structures is returned.

BUGS

SEE ALSO

1.49 bbsread.library/SortMessageArray()

BBSRead.adoc 58 / 78

NAME
SortMessageArray -- Sorts messagenumbers in an array by the given method (V5

)

SYNOPSIS
msgnrbuf = SortMessageArray(conf, usebuf, method)
D0 A0 A1 D0

ULONG * SortMessageArray(struct ConfListItem *, ULONG *);

FUNCTION
Sorts the NULL-terminated array usebuf according to the given method.

INPUTS
conf - Pointer to conference to use for the array
usebuf - Pointer to the buffer that contains the messagenumbers.

NOTE: The buffer must be NULL-terminated.
method - What method should be used when sorting the messages. See

<libraries/bbsread.h> for definitions

RESULT
msgnrbuf - Pointer to the buffer containing the messagenumbers.

On failure, a NULL pointer is returned.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.50 bbsread.library/StartOfAdding()

NAME
StartOfAdding -- Call before adding a grab. (Used by MsgParser)

SYNOPSIS
void StartOfAdding(bbs)

A0

void StartOfAdding(struct BBSListItem *);

FUNCTION
Function for MsgParser to call before doing anything with UnArchiving
or parsing. Locks your access to add a grab to this BBS. Makes sure
2 or more processes do not add the same grab simultaneously.

Each call to this function must be coupled with a call to

EndOfAdding()
.

INPUTS

BBSRead.adoc 59 / 78

bbs - Pointer to BBSListItem for BBS to start adding to.

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

EndOfAdding()

1.51 bbsread.library/TypeFromBBS()

NAME
TypeFromBBS - Returns the TypeListItem structure of a BBS.

SYNOPSIS
bbstype = TypeFromBBS(bbs)
D0 A0

struct TypeListItem * TypeFromBBS(struct BBSListItem *);

FUNCTION
Returns the TypeListItem structure correspondig to the type of the bbs
parameter. Use this function instead of searching the type list by
name for the correspondig TypeListItem.

The TypeListItem structure returned is not a part of a list, so don’t
use the tl_Node. The structure must be deallocated with

FreeBRObject()
.

INPUTS
bbs - Pointer to the BBSListItem to get the type of.

RESULT
bbstype - Pointer to a TypeListItem for the bbs. Returns a NULL

pointer on failure.

EXAMPLE

NOTES

BUGS

SEE ALSO

BBSRead.adoc 60 / 78

1.52 bbsread.library/UnArchive()

NAME
UnArchive -- Unarchives an archive.

SYNOPSIS
error = UnArchive(archive, tagitems)
D0 A0 A1

BOOL UnArchive(STRPTR, struct TagItem *);

error = UnArchiveTags(archive, Tag1, ...)

LONG UnArchiveTags(STRPTR, ULONG, ...);

FUNCTION
This function unarchives an archive. The type of archiver to use is
determined with the global configuration for the library. If no
archivetypes match this archive, the function will return failure. The
ability to return failure when the unarchivers fail depends on how the
unarchivers behave.

Files which match no known archiver will be copied to the destination.
Files with .txt extension and files without extension are treated as
text files and trailing numbers in the file name will be removed.
(.txt extension will also be removed)

The tags not understood are forwarded to dos.library/SystemTagList().
Look at dos.library/SystemTagList() for futher information on tags.

INPUTS
archive - Pointer to path and name of archive to unarchive.
tagitems - Pointer to TagItem array. See <dos/dostags.h>. Both

dos.library/SystemTagList() tags and dos.library/CreateNewProc()
tags may be passed.

Here are the TagItem.ti_Tag values that are defined for
UnArchive().

UA_RetrieveFile - File to retrieve from archive is in (STRPTR)
ti_Data. More than one of this tag can be passed. If this tag is
omitted, all files in archive will be unarchived.

UA_DestDir - Path to destination directory is in (STRPTR) it_Data.
Default is to use current directory as destination directory.

UA_ArchiverUsed - Where to put a pointer to the ArcConfigItem
structure for the archiver used in archive is pointed by
(struct ArcConfigItem **) ti_Data. The ArcConfigItem structure
returned is not a part of a list, so don’t use the ac_Node. The
structure must be deallocated with

FreeBRObject()
. You get a

NULL when no identifiable archiver is used or the function failed
with -1.

BBSRead.adoc 61 / 78

RESULT
error - 0 for success, result from archiver, or -1. Note that on

error, the caller is responsible for any filehandles or other
things passed in via tags.

EXAMPLE

NOTES

BUGS
If a destination directory is spesified, the archive _must_ be given
with an absolute path.

SEE ALSO

1.53 bbsread.library/UniqueMsgFile()

NAME
UniqueMsgFile -- Create a unique message file (for events)

SYNOPSIS
filename = UniqueMsgFile(bbs, filepart, tagitems)
D0 A0 A1 A2

STRPTR UniqueMsgFile(struct BBSListItem *, STRPTR *,
struct TagItem *);

filename = UniqueMsgFileTags(bbs, filepart, Tag1, ...)

STRPTR UniqueMsgFileTags(struct BBSListItem *, STRPTR *,
ULONG, ...);

FUNCTION
Creates a unique message file to be used with BREV_MsgFile and
BREV_DetailedFileDescr tags. The file is created in the directory for
the given bbs. If the type of the bbs has td_InitMsgFile set, the
command will be used to initialize the msg file.

INPUTS
bbs - Pointer to BBSListItem for bbs.
filepart - Pointer to STRPTR where to put the pointer to the file

part of the filename and path returned. The pointer returned in

*filepart must be used in the BREV_MsgFile and
BREV_DetailedFileDescr tags.

tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
UniqueMsgFile():

UMF_Extension - Extension to use for message file is pointed by
(STRPTR) ti_Data. The default extension is "msg".

UMF_UseTag - What message tag the file should be used for is in
(ULONG) ti_Data. The default value is BREV_MsgFile.

BBSRead.adoc 62 / 78

UMF_Event - What type of event this message should be used for is in
(ULONG) ti_Data. The default event type is EVE_ENTERMSG.

RESULT
filename - Complete path to the created file. Returns NULL on

failure. The filename *must* be freed with a call to

FreeBRObject()
.

EXAMPLE

NOTES
If you for some reason don’t use the returned filename in any event
tag, you should delete the file before you call

FreeBRObject()
.

BUGS

SEE ALSO

1.54 bbsread.library/UpdateBREvent()

NAME
UpdateBREvent -- Updates the flags of one event.

SYNOPSIS
success = UpdateBREvent(bbs, eventnr, tagitems)
D0 A0 D1 A1

BOOL UpdateBREvent(struct BBSListItem *, ULONG, struct TagItem *);

success = UpdateBREventTags(bbs, eventnr, Tag1, ...)

BOOL UpdateBREventTags(struct BBSListItem *, ULONG, ULONG, ...);

FUNCTION
Lets you update the flags of an event. This function will set the
BDF_EVENTS_CHANGED flag for this BBS. The priority of the flags are:
(highest to lowest) EDF_DELETED, EDF_DONE, EDF_ERROR, EDF_FREEZE,
EDF_PACKED.

INPUTS
bbs - BBS to update event on.
eventnr - Eventnr to update.
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
UpdateBREvent().

UBRE_SetDeleted - Set EDF_DELETED flag if (BOOL) ti_Data is TRUE.
Will clear EDF_PACKED and EDF_ERROR flags.

BBSRead.adoc 63 / 78

UBRE_ClearDeleted - Clear EDF_DELETED flag if (BOOL) ti_Data is TRUE.

UBRE_SetPacked - Set EDF_PACKED flag if (BOOL) ti_Data is TRUE. This
flag is for use against BBS’es where evenets are sent in packages.
Set this flag when the event is packed into the package. Then use
this flag to delete the events done when the package is
successfully sent. This makes it possible to repack a package
easily without loosing any events.

UBRE_ClearPacked - Clear EDF_PACKED flag if (BOOL) ti_Data is TRUE.

UBRE_SetError - Set EDF_ERROR flag if (BOOL) ti_Data is TRUE. Set
this flag if the event couldn’t be executed. While this flag is
set, event packers should ignore this event. Will clear the
EDF_PACKED flag.

UBRE_ClearError - Clear EDF_ERROR flag if (BOOL) ti_Data is TRUE.

UBRE_SetDone - Set EDF_DONE flag if (BOOL) ti_Data is TRUE. This flag
should be set when an event is successfully executed. Events
marked with this flag will be removed from the datafile when
packing the eventdata.

UBRE_ClearDone - Clear EDF_DONE flag if (BOOL) ti_Data is TRUE.

UBRE_SetFreeze - Set EDF_FREEZE flag if (BOOL) ti_Data is TRUE. When
his flag is set, event pakkers should ignore this event. Will
clear the EDF_PACKED flag.

UBRE_ClearFreeze - Clear EDF_FREEZE flag if (BOOL) ti_Data is TRUE.

UBRE_Activate - Activate event if (BOOL) ti_Data is TRUE. Will clear
EDF_FREEZE, EDF_DONE, EDF_ERROR, EDF_PACKED and EDF_DELETED
flags.

RESULT
success - Boolean.

EXAMPLE

NOTES
bbs->bl_Data->bd_Flags and bbs->bl_Data->bd_NumEvents will be updated
by UpdateBREvent().

BUGS

SEE ALSO

WriteBREvent()

1.55 bbsread.library/UpdateBRMessage()

BBSRead.adoc 64 / 78

NAME
UpdateBRMessage -- Updates the flags of one message.

SYNOPSIS
success = UpdateBRMessag(conf, msgnr, tagitems)
D0 A0 D1 A1

BOOL UpdateBRMessage(struct ConfListItem *, ULONG, struct TagItem *);

success = UpdateBRMessageTags(conf, msgnr, Tag1, ...)

BOOL UpdateBRMessageTags(struct ConfListItem *, ULONG, ULONG, ...);

FUNCTION
Lets you update the flags of a message.

INPUTS
conf - Pointer to conference where to update message.
msgnr - Number of the message to .
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
UpdateBRMessage().

UBRM_SetDelete - Set MDF_DELETED flag if (BOOL) ti_Data is TRUE.
Will also unmark the message if it is marked.

UBRM_ClearDelete - Clear MDF_DELETED flag if (BOOL) ti_Data is TRUE.
Will fail if MDF_UNRECOVERABLE flag is set.

UBRM_SetKeep - Set MDF_KEEP flag if (BOOL) ti_Data is TRUE.

UBRM_ClearKeep - Clear MDF_KEEP flag if (BOOL) ti_Data is TRUE.

UBRM_SetReplied - Set MDF_REPLIED flag if (BOOL) ti_Data is TRUE.

UBRM_ClearReplied - Clear MDF_REPLIED flag if (BOOL) ti_Data is TRUE.

UBRM_SetUrgent - Set MDF_URGENT flag if (BOOL) ti_Data is TRUE.

UBRM_ClearUrgent - Clear MDF_URGENT flag if (BOOL) ti_Data is TRUE.

UBRM_SetImportant - Set MDF_IMPORTANT flag if (BOOL) ti_Data is TRUE.

UBRM_ClearImportant - Clear MDF_IMPORTANT flag if (BOOL) ti_Data is
TRUE.

UBRM_ClearMarked - Clear MDF_MARKED flag (make msg read) if (BOOL) ti_Data
is TRUE.

UBRM_SetMarked - Set MDF_MARKED flag (make msg unread) if (BOOL) ti_Data
is TRUE.

UBRM_SetSuperUnread - Set MDF_SUPERMARKED flag if (BOOL) ti_Data is TRUE.

UBRM_ClearSuperUnread - Clear MDF_SUPERMARKED flag if (BOOL) ti_Data is
TRUE.

BBSRead.adoc 65 / 78

URBM_SetHazeLevel - Haze Level to set for message is in (ULONG)
ti_Data. Possible haze levels are 0 to 3.

0 - No hazing.
1 - The message will be kept at least as long as

GlobalConfig->gc_HazeLevel1 seconds.
2 - The message will be kept at least as long as

GlobalConfig->gc_HazeLevel2 seconds.
3 - The message will be kept at least as long as

GlobalConfig->gc_HazeLevel3 seconds.

URBM_SetConfidential - Set MDF_CONFIDENTIAL flag if (BOOL) ti_Data is
TRUE.

URBM_ClearConfidential - Clear MDF_CONFIDENTIAL flag if (BOOL) ti_Data
is TRUE.

RESULT
success - Boolean.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.56 bbsread.library/UpdateDataStruct()

NAME
UpdateDataStruct -- Updates data structures.

SYNOPSIS
fail = UpdateDataStruct(tagitems)
D0 A0

struct TagItem * UpdateDataStruct(struct TagItem *);

fail = UpdateDataStructTags(Tag1, ...)

struct TagItem * UpdateDataStructTags(ULONG, ...);

FUNCTION
Function for updating data structures. This metod involves less
overhead than freeing an getting a new data structure. If you don’t
use the UD_RemoveDeleted tag, you will be garanteed that all entrys
in the lists are still there. The entrys in a list may have changed
order, and there may have been inserted new nodes.

INPUTS
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
UpdateDataStruct().

BBSRead.adoc 66 / 78

UD_ConfList - Conference list to update datastructures in is pointed
by (List *) ti_Data.

UD_ConfItem - ConfListItem structure to update is in (struct
ConfListItem *) ti_Data.

UD_BBSList - BBS list to update datastructures in is pointed by
(List *) ti_Data.

UD_BBSItem - BBSListItem structure to update is in (struct
BBSListItem *) ti_Data.

UD_FAreaList - File area list to update datastructures in is pointed
by (List *) ti_Data.

UD_FAreaItem - FAreaListItem structure to update is in (struct
FAreaListItem *) ti_Data.

UD_RemoveDeleted - Remove deleted entries in lists if (BOOL) ti_Data
is TRUE. Default is FALSE.

RESULT
fail - NULL on success. On failure, it points to the tag which caused

the failure.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.57 bbsread.library/WriteBREvent()

NAME
WriteBREvent -- Adds a event to a bbs.

SYNOPSIS
eventnr = WriteBREvent(bbs, event, tagitems)
D0 A0 D1 A1

ULONG WriteBREvent(struct BBSListItem *, ULONG, struct TagItem *);

eventnr = WriteBREventTags(bbs, event, Tag1, ...)

ULONG WriteBREventTags(struct BBSListItem *, ULONG, ULONG, ...);

FUNCTION
This function adds a event to the list of events to be done on the
next call to the BBS.

Available eventtypes and what tags that are allowed to use with the
different event types are defined in the BBSType for this BBS. Be

BBSRead.adoc 67 / 78

sure to pass all the NeedTags with apropriate values. This function
will set the BDF_EVENTS_CHANGED flag for this BBS.

INPUTS
bbs - Pointer to the BBSListItem for the bbs to add the event to.
event - What type of event to add. For a list of types se

<libraries/bbsread.h>
tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
WriteBREvent().

BREV_ToName - Name to send to is pointed by (STRPTR) ti_Data.
BREV_ToAddr - Address to send to is pointed by (STRPTR) ti_Data.
BREV_Subject - Subject of message is pointed by (STRPTR) ti_Data.

Must not be longer than TypeData->td_SubjectLength.

BREV_Conference - Name of conference is pointed by (STRPTR) ti_Data.
BREV_RefNr - The number of the message to reply to is in (ULONG)

ti_Data. The message number is the number this message has in the
local database.

BREV_RefOrginalNr - Number of the message on BBS to reply to is in
(ULONG) ti_Data.

BREV_RefId - The idstring of the message to reply to is pointed by
(STRPTR) ti_Data.

BREV_MsgFile - Name of file with text is pointed by (STRPTR) ti_Data.
Filename is relative to bbs->bl_BBSPath. Each line in this file
should not be longer than TypeData->td_LineLength.

BREV_Private - Message should be flagged as private if (BOOL) ti_Data
is TRUE. Default value is FALSE.

BREV_LocalFile - Path and name of local file is in (STRPTR) ti_Data.
BREV_Directory - Directory for file to up/down load is in (STRPTR)

ti_Data. This is the remote directory.

BREV_FileName - Name of file to upload/download is pointed by (STRPTR)
ti_Data. This is the remote filename. It must not be longer than
TypeData->td_FileNameLen.

BREV_DownloadNotify - Notify on download if (BOOL) ti_Data is TRUE.
Default value is FALSE.

BREV_FileDescr - File description is pointed by (STRPTR) ti_Data. Must
not be longer than TypeData->td_FileDescrLen.

BREV_DetailedFileDescr - Name of file with detailed file description
is pointed by (STRPTR) ti_Data. Filename is relative to
bbs->bl_BBSPath. Each line in this file should not be longer than
TypeData->td_LineLength.

BREV_FromMessageNr - Message number to start at is in (ULONG) ti_Data.
BREV_ToMessageNr - Message number to end at is in (ULONG) ti_Data.
BREV_CommandString - Command string is in (STRPTR) ti_Data.

BBSRead.adoc 68 / 78

BREV_Boolean - Boolean value is in (BOOL) ti_Data.
BREV_Date - Time in seconds since 1.January 1978 is in (ULONG)

ti_Data.

BREV_PGPSignID - Id for key to sign with is pointed by (STRPTR)
ti_Data. It’s preferable that the keyid is used to identify a
key. (e.g. 0x5B4231FD) Using a ’*’ will sign with the first key
in the secret keyring.

BREV_PGPEncryptID - Id for key(s) to encrypt with is pointed by
(STRPTR) ti_Data. It’s preferable that the keyid is used to
identify a key. (e.g. 0x5B4231FD) If more than one key are used to
encrypt, the id for each key should be separeated with a space.

BREV_RefConference - Name of the conferene of the message to reply to
is in (STRPTR) ti_Data. This tag is to be used when replying
messages to other conferences than the conference of the orginal
message. Should ony be used when the bbs type has the
TDF_GLOBAL_REPLIES flag set.

BREV_Urgent - Flag event as urgent if (BOOL) ti_Data is TRUE. Default
value is FALSE.

BREV_Important - Flag event as important if (BOOL) ti_Data is TRUE.
Default value is FALSE.

BREV_Confidential - Flag event as confidential if (BOOL) ti_Data is
TRUE. Default value is FALSE.

BREV_ReturnReceipt - Set return reciept flagg for event if (BOOL)
ti_Data is TRUE. Default value is FALSE.

BREV_Encode8bit - Encode outgoing text if it is 8 bit and (BOOL)
ti_Data is TRUE. Default value is FALSE.

WBREV_UpdateEventNr - Update event with event number (ULONG) ti_Data.
All old tags for this event will be discarded. Will clear the
flags set for this event.

RESULT
eventnr - The number the event got in the database. Returns 0 on

failure.

EXAMPLE

NOTES
All strings is considerd to be in ISO charset.

bbs->bl_Data->bd_LastEvent, bbs->bl_Data->bd_NumEvents and
bbs->bl_Data->bd_Flags will be updated by WriteBREvent().

BUGS

SEE ALSO

BBSRead.adoc 69 / 78

1.58 bbsread.library/WriteBRFile()

NAME
WriteBRFile -- Write an entry to the file database.

SYNOPSIS
filenr = WriteBRFile(farea, tagitems)
D0 A0 A1

ULONG WriteBRFile(struct FAreaListItem *, struct TagItem *);

filenr = WriteBRFileTags(farea, Tag1, ...)

ULONG WriteBRFileTags(struct FAreaListItem *, ULONG, ...);

FUNCTION
Writes an entry to a file area in the file database for a bbs.

INPUTS
farea - Pointer to FAreaListItem for file area to write file to.

tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
WriteBRFile().

BRFILE_Name - The name the file is identified with on the bbs is
pointed by (STRPTR) ti_Data. This tag must be supplied when
adding or updating file tags.

BRFILE_Date - The date the file has on the bbs is in (ULONG) ti_Data.
The time is in seconds since 1.January 1978.

BRFILE_Size - The size of the file is in (ULONG) ti_Data.

BRFILE_Description - A (short) description of the file is in a NULL
terminated STRPTR array pointed by (STRPTR *) ti_Data. Each STRPTR
represents a line of text. No newline characters are allowed.

BRFILE_Downloads - Number of times the file has been downloaded from
the bbs is in (ULONG) ti_Data.

WBRF_UpdateFileNr - Update the file with filenumber (ULONG) ti_Data.
All old tags for this file will be discarded.

WBRF_DeleteFile - Mark the file with file number supplied in the
WBRF_UpdateFileNr tag as deleted if (BOOL) ti_Data is TRUE.
This tag is ignored when the WBRF_UpdateFileNr tag is not
supplied.

RESULT
filenr - The number the file got in the database. Returns 0 on

failure.

EXAMPLE

BBSRead.adoc 70 / 78

NOTES

BUGS

SEE ALSO

1.59 bbsread.library/WriteBRIEFMsg()

NAME
WriteBRIEFMsg -- Write a message in BRIEF.

SYNOPSIS
error = WriteBRIEFMsg(fileid, conf, msgnr)
D0 A0 A1 D0

BOOL WriteBRIEFMsg(APTR, struct ConfListItem *, ULONG);

FUNCTION
Writes a message in BRIEF to a file opened by

BufBROpen()
.

INPUTS
fileid - APTR to BBSRead file handler.
conf - Pointer to ConfListItem for conference.
msgnr - Message number to write.

RESULT
error - Boolean.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.60 bbsread.library/WriteBRKill()

NAME
WriteBRKill -- Write an entry to the kill database.

SYNOPSIS
killnr = WriteBRKill(bbs, tagitems)
D0 A0 A1

ULONG WriteBRKill(struct BBSListItem *, struct TagItem *);

killnr = WriteBRKillTags(bbs, Tag1, ...)

BBSRead.adoc 71 / 78

ULONG WriteBRKillTags(struct BBSListItem *, ULONG, ...);

FUNCTION
Writes an entry to the kill database for aa bbs. This kill database
is used during message adding. Killed messages will be added to the
database, but will not be marked as unread unless WBRK_MarkDeleted is
used, in which case the message is NOT added to the database.
A message will be killed if the message data matches *one* of the
kills for a bbs. Kills can also be used to set message flags, see tags
below.

INPUTS
bbs - Pointer to BBSListItem for bbs to wtitekill to.

tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
WriteBRKill().

BRMSG_#? - All normal message tags can be used in a kill. Standard
AmigaDos wildcards can be used in all string tags. In string array,
tags all given lines must match one line in the corresponding tag
in the message. At least one message tag must be supplied to add
a kill.

BRKILL_Conference - Which conference to kill in is pointed by (STRPTR)
ti_Data. Standard AmigaDos wildcards can be used. Default value
for this tag is ’#?’.

BRKILL_Private - The kill will only match private messages if (BOOL)
ti_Date is TRUE. If (BOOL) ti_Date is FALSE, the kill will only
match non-private messages. The default is not to regard the
private flag.

BRKILL_Description - A description the user can use for this kill
is pointed by (STRPTR) ti_Data. New for V5 of bbsread.library.

WBRK_UpdateKillNr - Update the kill will kill number (ULONG) ti_Data.
All old tags and flags for this kill will be discarded.

WBRK_DeleteKill - Mark the kill with the kill number supplied in the
WBRK_UpdateKillNr tag as deleted if (BOOL) ti_Data is TRUE.

WBRK_MarkKeep - Mark messages matching the kill with MDF_KEEP if
(BOOL) ti_Data is TRUE. The message will be marked as unread.

WBRK_MarkUrgent - Mark messages matching the kill with MDF_URGENT if
(BOOL) ti_Data is TRUE. The message will be marked as unread.

WBRK_MarkImportant - Mark messages matching the kill with
MDF_IMPORTANT if (BOOL) ti_Data is TRUE. The message will be
marked as unread.

WBRK_MarkDeleted - Mark messages matching the kill with
MDF_DELETED if (BOOL) ti_Data is TRUE. The message will
not be written do the database in this case. (4.66+)

BBSRead.adoc 72 / 78

WBRK_MarkHazeLevel - Mark messages matching the kill with the haze
level according to (ULONG) ti_Data. Possible haze levels are 0
to 3. The message will be marked as unread.

0 - No hazing.
1 - The message will be kept at least as long as

GlobalConfig->gc_HazeLevel1 seconds.
2 - The message will be kept at least as long as

GlobalConfig->gc_HazeLevel2 seconds.
3 - The message will be kept at least as long as

GlobalConfig->gc_HazeLevel3 seconds.

RESULT
killnr - The number the kill got in the database. Returns 0 on

failure.

EXAMPLE

NOTES
WBRK_MarkDeleted is new for 4.66 and higher
BRKILL_Description is new for V5.

BUGS

SEE ALSO

1.61 bbsread.library/WriteBRMessage()

NAME
WriteBRMessage -- Writes a messsage to a conference.

SYNOPSIS
msgnr = WriteBRMessage(conf, tagitems)
D0 A0 A1

ULONG WriteBRMessage(struct ConfListItem *, struct TagItem *);

msgnr = WriteBRMessageTags(conf, Tag1, ...)

ULONG WriteBRMessageTags(struct ConfListItem *, ULONG, ...);

FUNCTION
This funtions Writes a message to a conference.

The multiple parts in multipart messages should be put in the taglist
in the order they should be presented. BRMSG_Text should always
contain the first text part of the message.

INPUTS
conf - Pointer to the ConfListItem for the conference to Write the

message to.

tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
WriteBRMessage().

BBSRead.adoc 73 / 78

BRMSG_FromName - The name of the user who this message is written by
is pointed by (STRPTR) ti_Data. This is only the ’real name’ of
the author. This tag must be supplied.

BRMSG_FromAddr - The address of the user this messag is written by is
pointed by (STRPTR) ti_Data. This is the author’s net-address.
The name needn’t redundantly be repeated in this field, if it’s
already in BRMSG_FromName. Only use this if the message is in a
network conference.

BRMSG_ToName - The name of the user who this message is to is pointed
by (STRPTR) ti_Data. This is only the ’real name’. When adding
messages with no receiver (to all), use a NULL pointer in ti_Data
or omit this tag.

BRMSG_ToAddr - The address of the user this messag is to is pointed by
(STRPTR) ti_Data. This is the addressed person’s net-address. The
name needn’t redundantly be repeated in this field, if it’s
already in BRMSG_ToName. Only use this if the message is in a
network conference. This tag can only be used when you use the
BRMSG_ToName tag.

BRMSG_MsgID - The message ID string is pointed by (STRPTR) ti_Data.
Use this tag when the message has a string as idenificator. This
id is considered to be unique.

BRMSG_OrginalNr - The number this message has on the BBS is in (ULONG)
ti_Data. Use this tag when the message has a number as
identificator.

BRMSG_RefID - If this message is an answer (STRPTR) ti_Data points to
the ID string for the message this message refer to.

BRMSG_RefNr - If this message is an answer (ULONG) ti_Data contains
the messagenumber this message refer to. The messagenumber is the
number the refered message has on the BBS.

BRMSG_CreationDate - The time the message was created is in (ULONG)
ti_Data. The time is in seconds since 1.January 1978.

BRMSG_CreationDateTxt - The time the message was created is in
(STRPTR) ti_Data. The formating of the string is free. Use this
when it is impossible to use BRMSG_CreationDate

BRMSG_Subject - The subject of the message is pointed by (STRPTR)
ti_Data. This tag must be supplied.

BRMSG_ReplyConf - The name of the conference a reply to this message
should be put is pointed by (STRPTR) ti_Data. If the message is
private, it should only be moved if it is possible to have private
messages in this conference.

BRMSG_ReplyName - Name of the user a reply of this message should go
to is in (STRPTR) ti_Data. Same format as BRMSG_ToName.

BRMSG_ReplyAddr - The address of the user a reply of this message

BBSRead.adoc 74 / 78

should go to is in (STRPTR) ti_Data. Same format as BRMSG_ToAddr.

BRMSG_Comment - Comments concerning this message is in a NULL
terminated STRPTR array pointed by (STRPTR *) ti_Data. Each STRPTR
represents a line of text. No newline characters are allowed.
Header information not used in anoter tag could be put here.

BRMSG_Text - The text in this message is in a NULL terminated STRPTR
array pointed by (STRPTR *) ti_Data. Each STRPTR represents a line
of text. No newline characters are allowed. This tag must be
supplied, but can point to a 0 line STRPTR array. Any information
that do not belong to the orginal text must not be put here. The
text may be of any size. Lines may be of any length. It is up to
the reader program to wrap lines if needed.

BRMSG_BinaryPart - File name for file containing the binary part is
pointed by (STRPTR) ti_Data. Paths should be relative to
bbs->bl_BBSPath, but absolute paths are alloved. This tag can be
used more than once in a message.

BRMSG_BinaryPartDesc - A description of the binary part is pointed by
(STRPTR) ti_Data. The N’th use of this tag describes the n’th use
of the BRMSG_BinaryPart tag. This tag must be used each time the
BRMSG_BinaryPart tag is used.

BRMSG_BinaryPartComment - Comments concerning a binary part is in a
NULL terminated STRPTR array pointed by (STRPTR *) ti_Data. Each
STRPTR represents a line of text. No newline characters are
allowed. The N’th use of this tag comments the n’th use of the
BRMSG_BinaryPart tag. This tag must be used each time the
BRMSG_BinaryPart tag is used. It’s legal for the comment to
contain 0 lines.

BRMSG_TextPart - If the message contains more than one text part,
the parts beyond the first part should use this tag. The text is
in a NULL terminated STRPTR array pointed by (STRPTR *) ti_Data.
Each STRPTR represents a line of text. No newline characters are
allowed. This tag can be used more than once in a message.

BRMSG_TextPartComment - Comments concerning a text part is in a NULL
terminated STRPTR array pointed by (STRPTR *) ti_Data. Each STRPTR
represents a line of text. No newline characters are allowed. The
N’th use of this tag comments the n’th use of the BRMSG_TextPart
tag. This tag must be used each time the BRMSG_TextPart tag is
used. It’s legal for the comment to contain 0 lines.

BRMSG_MsgPart - A tag array for a message part is pointed by (TagItem

*) ti_Data. The tagarry can contain *all* message tags, and *must*
contain at least one BRMSG_#? tag. This tag can be used more than
once in a message.

WBRMSG_MarkMessage - Message will be marked if (BOOL) ti_Data is TRUE.
NB: Default is TRUE. Messages written by
bd_UserName/gc_GlobalUserName which not are to bd_UserName and
messages which matches a normal kill will not be marked.

WBRMSG_Private - Message is flaged as private if (BOOL) ti_Data is

BBSRead.adoc 75 / 78

TRUE. Default is FALSE.

WBRMSG_Read - Message is flagged as read by reciever if (BOOL)
ti_Data is TRUE. Default is FALSE.

WBRMSG_Urgent - Message is flagged as urgent if (BOOL) ti_Data is
TRUE. Default is FALSE.

WBRMSG_Important - Message is flagged as important if (BOOL) ti_Data
is TRUE. Default is FALSE.

WBRMSG_Confidential - Message is flagged as confidential if (BOOL)
ti_Data is TRUE. Default is FALSE.

WBRMSG_ToFromUserStatus - The status of the MDF_TO_USER and
MDF_FROM_USER flags this message should have is in (LONGBITS)
ti_Data. When this tag is used, the sender or receiver will *not*
be matched against the name and/or address of the user. When using
this tag, the parser is responsible for checking if the message is
to or from the user.

RESULT
msgnr - The number the message got in the database. Returns 0 on

failure and -1 if the message matched a kill that would delete
the message, in which case the message will not be added to
the database.

EXAMPLE
Some examples for splitting addresses in ’Name’ and
’Address’:

RFC:

"Martin Horneffer <maho@balrog.dfv.rwth-aachen.de>"
-> name: "Martin Horneffer"

address: "maho@balrog.dfv.rwth-aachen.de"

"horneff@pool.informatik.rwth-aachen.de (Martin Horneffer)"
-> name: "Martin Horneffer"

address: "horneff@pool.informatik.rwth-aachen.de"

"horneff@pool.informatik.rwth-aachen.de"
-> name: "horneff"

address: "horneff@pool.informatik.rwth-aachen.de"

FidoNet:

"Martin Horneffer at 2:242/7.9"
-> name: "Martin Horneffer"

address: "2:242/7.9"

"Joerg Gutzke at 2:242/7"
-> name: "Joerg Gutzke"

address: "2:242/7"

NOTES
All strings is considered to be in the BRCS_ISO charset. To get the

BBSRead.adoc 76 / 78

charset defined for this Conf/BBS/BBSType use
ConfCharset()
.

-1 is a new return code added for 4.65 and higher of bbsread.library

BUGS

SEE ALSO

1.62 bbsread.library/WriteBRUser()

NAME
WriteBRUser -- Writes a user to a bbs.

SYNOPSIS
usernr = WriteBRUser(bbs, tagitems)
D0 A0 A1

ULONG WriteBRUser(struct BBSListItem *, struct TagItem *);

usernr = WriteBRUserTags(bbs, Tag1, ...)

ULONG WriteBRUserTags(struct BBSListItem *, ULONG, ...);

FUNCTION
Writes a user to the userdatabase for a bbs.

INPUTS
bbs - Pointer to BBSListItem for bbs to write user to.

tagitems - Pointer to TagItem array.

Here are the TagItem.ti_Tag values that are defined for
WriteBRUser().

BRUSR_Name - The name the user has om this bbs is pointed by (STRPTR)
ti_Data. This tag must be supplied when adding or updating a user.

BRUSR_Address - The address the user has on this bbs is pointed by
(STRPTR) ti_Data.

BRUSR_Alias - Alias to use for refering to this user is pointed by
(STRPTR) ti_Data. This alias can be used to look up this user
in the database.

BRUSR_Comment - A comment that can be attatched to this user is in a
NULL terminated STRPTR array pointed by (STRPTR *) ti_Data. Each
STRPTR represents a line of text. No newline characters are
allowed.

BRUSR_Encode8BitMsg - Encode 8 bit private messages to this user if
(BOOL) ti_Data is TRUE. Default is FALSE. Only applicable when the
TDF_SUPPORTS_ENCODE_8BIT_MAIL flag is set for the bbstype of this

BBSRead.adoc 77 / 78

bbs.

BRUSR_PGPkeyID - The PGP key ID for this users PGP key is pointed by
(STRPTR) ti_Data.

WBRUSR_UpdateUserNr - Update the user with user number (ULONG)
ti_Data. All old tags for this user will be discarded.

WBRUSR_DeleteUser - Mark the user with the usernumber supplied in the
WBRUSR_UpdateUserNr tag as deleted if (BOOL) ti_Data is TRUE.
This tag is ignored when the WBRUSR_UpdateUserNr tag is not
supplied.

WBRUSR_OnlyIfNotExist - If (BOOL) ti_Data is TRUE, the user will only
be written to the database if the name given in BRUSR_Name don’t
exist in the database. Default is FALSE. This tag is ignored when
updating users with WBRUSR_UpdateUserNr.

RESULT
usernr - The number the user got in the database. Returns 0 on

failure.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.63 bbsread.library/WritePassiveConfList()

NAME
WritePassiveConfList -- Write to the passive conference list.

SYNOPSIS
error = WritePassiveConfList(bbs, passConfList)
D0 A0 A1

BOOL WritePassiveConfList(struct BBSListItem *, struct List *);

FUNCTION
Writes a list of conference names to the passive conference list
datafiles. The old list is deleted before writing this new one. The
passive conference list is a list of *all* available conferences at
the bbs. It should be used when the user want to send a join event.

The list should only be written when the parser has got a list over
all conferences at the bbs. If you don’t have the internal number for
the conference, pl_BBSConfNr must be initalized to -1.

INPUTS
bbs - Pointer to the bbs which the list should be written to.
passConfList - Pointer to a list of struct PasssConfListItem.

BBSRead.adoc 78 / 78

RESULT
error - Boolean.

EXAMPLE

NOTES

BUGS

SEE ALSO

	BBSRead.adoc
	bbsread.library
	bbsread.library/--background--
	bbsread.library/AppendPassiveConfList()
	bbsread.library/Archive()
	bbsread.library/BBSEventArchiver()
	bbsread.library/BBSUserData()
	bbsread.library/BufBRClose()
	bbsread.library/BufBROpen()
	bbsread.library/BufBRRead()
	bbsread.library/BufBRSeek()
	bbsread.library/BufBRWrite()
	bbsread.library/CharsetConvert()
	bbsread.library/ConfCharset()
	bbsread.library/ConfigBBS()
	bbsread.library/ConfigConf()
	bbsread.library/ConfigFArea()
	bbsread.library/ConfigGlobal()
	bbsread.library/ConfigType()
	bbsread.library/ConfLineLength()
	bbsread.library/EndOfAdding()
	bbsread.library/ExternalBBSConfig()
	bbsread.library/FindDupBRMsg()
	bbsread.library/FindOrginalNr()
	bbsread.library/FreeBRObject()
	bbsread.library/GetBBSList()
	bbsread.library/GetConfigValue()
	bbsread.library/GetConfList()
	bbsread.library/GetFAreaList()
	bbsread.library/GetGlobalConfig()
	bbsread.library/GetMarkedMsg()
	bbsread.library/GetSignature()
	bbsread.library/GetTagFile()
	bbsread.library/GetTypeList()
	bbsread.library/MakeEventPackage()
	bbsread.library/MarkMessage()
	bbsread.library/PackDataFile()
	bbsread.library/ParseGrab()
	bbsread.library/PGPBREvents()
	bbsread.library/ReadBREvent()
	bbsread.library/ReadBRFile()
	bbsread.library/ReadBRKill()
	bbsread.library/ReadBRMessage()
	bbsread.library/ReadBRUser()
	bbsread.library/ReadPassiveConfList()
	bbsread.library/ScanForGrabs()
	bbsread.library/SearchBRFile()
	bbsread.library/SearchBRMessage()
	bbsread.library/SearchBRUser()
	bbsread.library/SortMessageArray()
	bbsread.library/StartOfAdding()
	bbsread.library/TypeFromBBS()
	bbsread.library/UnArchive()
	bbsread.library/UniqueMsgFile()
	bbsread.library/UpdateBREvent()
	bbsread.library/UpdateBRMessage()
	bbsread.library/UpdateDataStruct()
	bbsread.library/WriteBREvent()
	bbsread.library/WriteBRFile()
	bbsread.library/WriteBRIEFMsg()
	bbsread.library/WriteBRKill()
	bbsread.library/WriteBRMessage()
	bbsread.library/WriteBRUser()
	bbsread.library/WritePassiveConfList()

